These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23525627)

  • 1. Robert K. Crane-Na(+)-glucose cotransporter to cure?
    Hamilton KL
    Front Physiol; 2013; 4():53. PubMed ID: 23525627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose transport into everted sacs of the small intestine of mice.
    Hamilton KL; Butt AG
    Adv Physiol Educ; 2013 Dec; 37(4):415-26. PubMed ID: 24292921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.
    Manoharan P; Gayam S; Arthur S; Palaniappan B; Singh S; Dick GM; Sundaram U
    Am J Physiol Cell Physiol; 2015 Apr; 308(8):C650-6. PubMed ID: 25652450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process.
    Lin R; Murtazina R; Cha B; Chakraborty M; Sarker R; Chen TE; Lin Z; Hogema BM; de Jonge HR; Seidler U; Turner JR; Li X; Kovbasnjuk O; Donowitz M
    Gastroenterology; 2011 Feb; 140(2):560-71. PubMed ID: 20977906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter.
    Veyhl M; Spangenberg J; Püschel B; Poppe R; Dekel C; Fritzsch G; Haase W; Koepsell H
    J Biol Chem; 1993 Nov; 268(33):25041-53. PubMed ID: 8227068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Na+/glucose cotransporters.
    Wright EM; Hirsch JR; Loo DD; Zampighi GA
    J Exp Biol; 1997 Jan; 200(Pt 2):287-93. PubMed ID: 9050236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholera, diarrhea, and oral rehydration therapy: triumph and indictment.
    Guerrant RL; Carneiro-Filho BA; Dillingham RA
    Clin Infect Dis; 2003 Aug; 37(3):398-405. PubMed ID: 12884165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidermal growth factor up-regulates sodium-glucose cotransport in enterocyte models in the presence of cholera toxin.
    Mehta DI; Horváth K; Chanasongcram S; Hill ID; Panigrahi P
    JPEN J Parenter Enteral Nutr; 1997; 21(4):185-91. PubMed ID: 9252942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling between Na+, sugar, and water transport across the intestine.
    Wright EM; Loo DD
    Ann N Y Acad Sci; 2000; 915():54-66. PubMed ID: 11193601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of efficacy of a glucose/glycine/glycylglycine electrolyte solution versus the standard WHO/ORS in diarrheic dehydrated children.
    Pizarro D; Posada G; Mahalanabis D; Sandí L
    J Pediatr Gastroenterol Nutr; 1988; 7(6):882-8. PubMed ID: 3199275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression.
    Lee WS; Kanai Y; Wells RG; Hediger MA
    J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-stimulated sodium transport by the human intestine during experimental cholera.
    Schiller LR; Santa Ana CA; Porter J; Fordtran JS
    Gastroenterology; 1997 May; 112(5):1529-35. PubMed ID: 9136831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the human Na+/glucose cotransporter gene SGLT1.
    Turk E; Martín MG; Wright EM
    J Biol Chem; 1994 May; 269(21):15204-9. PubMed ID: 8195156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factor 21 improves glucose homeostasis partially via down-regulation of Na
    Wang N; Li S; Guo XC; Li JY; Ren GP; Li DS
    Biomed Pharmacother; 2019 Jan; 109():1070-1077. PubMed ID: 30551357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene deletion of the Na
    Nespoux J; Patel R; Hudkins KL; Huang W; Freeman B; Kim YC; Koepsell H; Alpers CE; Vallon V
    Am J Physiol Renal Physiol; 2019 Jun; 316(6):F1201-F1210. PubMed ID: 30995111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the Na+/glucose cotransporter.
    Wright EM; Loo DD; Panayotova-Heiermann M; Hirayama BA; Turk E; Eskandari S; Lam JT
    Acta Physiol Scand Suppl; 1998 Aug; 643():257-64. PubMed ID: 9789568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells.
    Matosin-Matekalo M; Mesonero JE; Delezay O; Poiree JC; Ilundain AA; Brot-Laroche E
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):633-40. PubMed ID: 9729472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
    Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM
    J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. History of the development of oral rehydration therapy.
    da Cunha Ferreira RM; Cash RA
    Clin Ther; 1990; 12 Suppl A():2-11; discussion 11-3. PubMed ID: 2187608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. History of development of oral rehydration therapy.
    Bhattacharya SK
    Indian J Public Health; 1994; 38(2):39-43. PubMed ID: 7530695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.