BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23525969)

  • 1. The role of cysteines and histidins of the norepinephrine transporter.
    Wenge B; Bönisch H
    Neurochem Res; 2013 Jul; 38(7):1303-14. PubMed ID: 23525969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation.
    Reith ME
    Neurochem Res; 2013 Jul; 38(7):1301-2. PubMed ID: 23532308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of [³H]CFT binding to the norepinephrine transporter suggests that binding of CFT and nisoxetine is not mutually exclusive.
    Zhen J; Ali S; Dutta AK; Reith ME
    J Neurosci Methods; 2012 Jan; 203(1):19-27. PubMed ID: 21933682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations of tyrosine 467 in the human norepinephrine transporter attenuate HIV-1 Tat-induced inhibition of dopamine transport while retaining physiological function.
    Strauss MJ; Porter KD; Quizon PM; Davis SE; Lin S; Yuan Y; Martinez-Muniz GA; Sun WL; Zhan CG; Zhu J
    PLoS One; 2022; 17(9):e0275182. PubMed ID: 36170295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the functional roles of the MELAL and GQXXRXG motifs of the human noradrenaline transporter using cysteine mutants.
    Sucic S; Bryan-Lluka LJ
    Eur J Pharmacol; 2007 Feb; 556(1-3):27-35. PubMed ID: 17141753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of transport function and desipramine binding at the human noradrenaline transporter by N-ethylmaleimide and protection by substrate analogs.
    Foley KF; Cozzi NV
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Jun; 365(6):457-61. PubMed ID: 12070759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Ethylmaleimide differentially inhibits substrate uptake by and ligand binding to the noradrenaline transporter.
    Wenge B; Bönisch H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 May; 377(3):255-65. PubMed ID: 18357440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutations near transmembrane domain 1 alter conformation and function of norepinephrine and dopamine transporters.
    Guptaroy B; Fraser R; Desai A; Zhang M; Gnegy ME
    Mol Pharmacol; 2011 Mar; 79(3):520-32. PubMed ID: 21149640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology.
    Paczkowski FA; Bryan-Lluka LJ
    Brain Res Mol Brain Res; 2001 Dec; 97(1):32-42. PubMed ID: 11744160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional importance of the C-terminus of the human norepinephrine transporter.
    Distelmaier F; Wiedemann P; Brüss M; Bönisch H
    J Neurochem; 2004 Nov; 91(3):537-46. PubMed ID: 15485485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological properties of the naturally occurring Ala(457)Pro variant of the human norepinephrine transporter.
    Paczkowski FA; Bönisch H; Bryan-Lluka LJ
    Pharmacogenetics; 2002 Mar; 12(2):165-73. PubMed ID: 11875370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of serine mutations in transmembrane domain 7 of the human norepinephrine transporter on substrate binding and transport.
    Danek Burgess KS; Justice JB
    J Neurochem; 1999 Aug; 73(2):656-64. PubMed ID: 10428062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of transmembrane domain 2 and the first intracellular loop in human noradrenaline transporter function: pharmacological and SCAM analysis.
    Sucic S; Bryan-Lluka LJ
    J Neurochem; 2005 Sep; 94(6):1620-30. PubMed ID: 16092934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the conserved GXXXRXG motif in the expression and function of the human norepinephrine transporter.
    Sucic S; Bryan-Lluka LJ
    Brain Res Mol Brain Res; 2002 Dec; 108(1-2):40-50. PubMed ID: 12480177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter.
    Wang CI; Shaikh NH; Ramu S; Lewis RJ
    Mol Pharmacol; 2012 Nov; 82(5):898-909. PubMed ID: 22874414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of the splicing variants of human norepinephrine transporter.
    Kitayama S; Morita K; Dohi T
    Neurosci Lett; 2001 Oct; 312(2):108-12. PubMed ID: 11595346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of the norepinephrine transporter at threonine 258 and serine 259 is linked to protein kinase C-mediated transporter internalization.
    Jayanthi LD; Annamalai B; Samuvel DJ; Gether U; Ramamoorthy S
    J Biol Chem; 2006 Aug; 281(33):23326-40. PubMed ID: 16740633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-regulation of the human norepinephrine transporter in intact 293-hNET cells exposed to desipramine.
    Zhu MY; Blakely RD; Apparsundaram S; Ordway GA
    J Neurochem; 1998 Apr; 70(4):1547-55. PubMed ID: 9523572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human norepinephrine transporter. Biosynthetic studies using a site-directed polyclonal antibody.
    Melikian HE; McDonald JK; Gu H; Rudnick G; Moore KR; Blakely RD
    J Biol Chem; 1994 Apr; 269(16):12290-7. PubMed ID: 8163533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition.
    Melikian HE; Ramamoorthy S; Tate CG; Blakely RD
    Mol Pharmacol; 1996 Aug; 50(2):266-76. PubMed ID: 8700133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.