These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 23526265)

  • 21. Stagewise dilute-acid pretreatment and enzyme hydrolysis of distillers' grains and corn fiber.
    Noureddini H; Byun J; Yu TJ
    Appl Biochem Biotechnol; 2009 Nov; 159(2):553-67. PubMed ID: 19247589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.
    Chen L; Zhang H; Li J; Lu M; Guo X; Han L
    Bioresour Technol; 2015 Feb; 177():8-16. PubMed ID: 25479388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions.
    Doner LW; Johnston DB; Singh V
    J Agric Food Chem; 2001 Mar; 49(3):1266-9. PubMed ID: 11312848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extraction of soluble fiber from distillers' grains.
    Flodman HR; Boyer EJ; Muthukumarappan A; Noureddini H
    Appl Biochem Biotechnol; 2012 Feb; 166(4):1070-81. PubMed ID: 22203395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber.
    Kim S; Park JM; Seo JW; Kim CH
    Bioresour Technol; 2012 Apr; 109():229-33. PubMed ID: 22306078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ; Patterson JA; Hamaker BR
    J Agric Food Chem; 2010 Jan; 58(1):493-9. PubMed ID: 20000566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reducing sugars production from corncobs: a comparative study of chemical and biotechnological methods.
    Potumarthi R; Baadhe RR; Pisipati A; Jetty A
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2162-70. PubMed ID: 25172055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment.
    Qing Q; Guo Q; Zhou L; He Y; Wang L; Zhang Y
    Appl Biochem Biotechnol; 2017 Jan; 181(1):350-364. PubMed ID: 27544773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment.
    Zheng M; Li X; Li L; Yang X; He Y
    Bioresour Technol; 2009 Nov; 100(21):5140-5. PubMed ID: 19540752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature.
    Zhao Y; Wang Y; Zhu JY; Ragauskas A; Deng Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1320-8. PubMed ID: 18023037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of extrusion conditions and lipoxygenase inactivation treatment on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends.
    Sosa-Moguel O; Ruiz-Ruiz J; Martínez-Ayala A; González R; Drago S; Betancur-Ancona D; Chel-Guerrero L
    Int J Food Sci Nutr; 2009; 60 Suppl 7():341-54. PubMed ID: 19763991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of peach gum polysaccharides using hydrogen peroxide.
    Yao XC; Cao Y; Pan SK; Wu SJ
    Carbohydr Polym; 2013 Apr; 94(1):88-90. PubMed ID: 23544514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks.
    Egüés I; Sanchez C; Mondragon I; Labidi J
    Bioresour Technol; 2012 Jan; 103(1):239-48. PubMed ID: 22029960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans.
    Yadav MP; Moreau RA; Hicks KB
    J Agric Food Chem; 2007 Feb; 55(3):943-7. PubMed ID: 17263497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass balance and transformation of corn stover by pretreatment with different dilute organic acids.
    Qin L; Liu ZH; Li BZ; Dale BE; Yuan YJ
    Bioresour Technol; 2012 May; 112():319-26. PubMed ID: 22437047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora.
    Naseeruddin S; Srilekha Yadav K; Sateesh L; Manikyam A; Desai S; Venkateswar Rao L
    Bioresour Technol; 2013 May; 136():542-9. PubMed ID: 23567729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids.
    Weiss ND; Farmer JD; Schell DJ
    Bioresour Technol; 2010 Jan; 101(2):674-8. PubMed ID: 19766484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of selected properties of gluten-free instant gruels processed under various extrusion-cook- ing conditions.
    Kręcisz M; Wójtowicz A
    Acta Sci Pol Technol Aliment; 2017; 16(2):135-147. PubMed ID: 28703954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes of corn stover lignin during acid pretreatment.
    Moxley G; Gaspar AR; Higgins D; Xu H
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1289-99. PubMed ID: 22543524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.