BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23526378)

  • 1. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis.
    Xing W; Liu J; Cheng S; Vogel P; Mohan S; Brommage R
    J Bone Miner Res; 2013 Sep; 28(9):1962-74. PubMed ID: 23526378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation.
    Zeng C; Goodluck H; Qin X; Liu B; Mohan S; Xing W
    Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E772-E780. PubMed ID: 27600824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LRRK1 regulation of actin assembly in osteoclasts involves serine 5 phosphorylation of L-plastin.
    Si M; Goodluck H; Zeng C; Pan S; Todd EM; Morley SC; Qin X; Mohan S; Xing W
    J Cell Biochem; 2018 Dec; 119(12):10351-10357. PubMed ID: 30136304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function.
    Rajapurohitam V; Chalhoub N; Benachenhou N; Neff L; Baron R; Vacher J
    Bone; 2001 May; 28(5):513-23. PubMed ID: 11344051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass.
    Mun SH; Won HY; Hernandez P; Aguila HL; Lee SK
    J Bone Miner Res; 2013 Apr; 28(4):948-59. PubMed ID: 23044992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucine Repeat Rich Kinase 1 Controls Osteoclast Activity by Managing Lysosomal Trafficking and Secretion.
    Shen S; Si M; Zeng C; Liu EK; Chen Y; Vacher J; Zhao H; Mohan S; Xing W
    Biology (Basel); 2023 Mar; 12(4):. PubMed ID: 37106712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade.
    Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S
    J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation.
    Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K
    Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive clear zone and defective ruffled border formation in osteoclasts of osteopetrotic (ia/ia) rats: implications for secretory function.
    Reinholt FP; Hultenby K; Heinegård D; Marks SC; Norgård M; Anderson G
    Exp Cell Res; 1999 Sep; 251(2):477-91. PubMed ID: 10471332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass.
    Menon P; Yin G; Smolock EM; Zuscik MJ; Yan C; Berk BC
    J Cell Physiol; 2010 Nov; 225(3):777-85. PubMed ID: 20568227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.
    Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J
    J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted overexpression of osteoactivin in cells of osteoclastic lineage promotes osteoclastic resorption and bone loss in mice.
    Sheng MH; Wergedal JE; Mohan S; Amoui M; Baylink DJ; Lau KH
    PLoS One; 2012; 7(4):e35280. PubMed ID: 22536365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of claudin-18 diminishes ovariectomy-induced bone loss in mice.
    Kim HY; Alarcon C; Pourteymour S; Wergedal JE; Mohan S
    Am J Physiol Endocrinol Metab; 2013 Mar; 304(5):E531-7. PubMed ID: 23299504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts.
    Lowe C; Yoneda T; Boyce BF; Chen H; Mundy GR; Soriano P
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4485-9. PubMed ID: 7685105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice.
    Schwartzberg PL; Xing L; Hoffmann O; Lowell CA; Garrett L; Boyce BF; Varmus HE
    Genes Dev; 1997 Nov; 11(21):2835-44. PubMed ID: 9353253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adult Osteosclerotic Metaphyseal Dysplasia With Progressive Osteonecrosis of the Jaws and Abnormal Bone Resorption Pattern Due to a LRRK1 Splice Site Mutation.
    Howaldt A; Hennig AF; Rolvien T; Rössler U; Stelzer N; Knaus A; Böttger S; Zustin J; Geißler S; Oheim R; Amling M; Howaldt HP; Kornak U
    J Bone Miner Res; 2020 Jul; 35(7):1322-1332. PubMed ID: 32119750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene.
    Miyazaki T; Takayanagi H; Isshiki M; Takahashi T; Okada M; Fukui Y; Oda H; Nakamura K; Hirai H; Kurokawa T; Tanaka S
    J Bone Miner Res; 2000 Jan; 15(1):41-51. PubMed ID: 10646113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteopetrosis with micro-lacunar resorption because of defective integrin organization.
    Blair HC; Yaroslavskiy BB; Robinson LJ; Mapara MY; Pangrazio A; Guo L; Chen K; Vezzoni P; Tolar J; Orchard PJ
    Lab Invest; 2009 Sep; 89(9):1007-17. PubMed ID: 19546854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the classical NF-kappaB pathway prevents osteoclast bone-resorbing activity.
    Soysa NS; Alles N; Shimokawa H; Jimi E; Aoki K; Ohya K
    J Bone Miner Metab; 2009; 27(2):131-9. PubMed ID: 19172225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the LRRK code: LRRK1 and LRRK2 phosphorylate distinct Rab proteins and are regulated by diverse mechanisms.
    Malik AU; Karapetsas A; Nirujogi RS; Mathea S; Chatterjee D; Pal P; Lis P; Taylor M; Purlyte E; Gourlay R; Dorward M; Weidlich S; Toth R; Polinski NK; Knapp S; Tonelli F; Alessi DR
    Biochem J; 2021 Feb; 478(3):553-578. PubMed ID: 33459343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.