These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23526640)

  • 21. Modeling ionic hydrogels swelling: characterization of the non-steady state.
    Traitel T; Kost J; Lapidot SA
    Biotechnol Bioeng; 2003 Oct; 84(1):20-8. PubMed ID: 12910539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery.
    Sun XF; Wang HH; Jing ZX; Mohanathas R
    Carbohydr Polym; 2013 Feb; 92(2):1357-66. PubMed ID: 23399165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.
    Manga RD; Jha PK
    J Pharm Sci; 2017 Feb; 106(2):629-638. PubMed ID: 27890245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion.
    Pimenta AFR; Ascenso J; Fernandes JCS; Colaço R; Serro AP; Saramago B
    Int J Pharm; 2016 Dec; 515(1-2):467-475. PubMed ID: 27789366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels.
    Ghosal K; Chandra A; Rajabalaya R; Chakraborty S; Nanda A
    Pharmazie; 2012 Feb; 67(2):147-55. PubMed ID: 22512085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of caffeine release from crosslinked water-swellable gelatin and gelatin-maltodextrin hydrogels.
    Abbasi A; Eslamian M; Rousseau D
    Drug Deliv; 2008 Sep; 15(7):455-63. PubMed ID: 18712623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules.
    Frutos G; Prior-Cabanillas A; París R; Quijada-Garrido I
    Acta Biomater; 2010 Dec; 6(12):4650-6. PubMed ID: 20643229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. III. Critical use of thermodynamic parameters of activation for modeling the water penetration and drug release processes.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2013 Sep; 170(2):175-82. PubMed ID: 23727289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Description of the release of sodium ferulate from hydroxypropyl methylcellulose based matrix tablets in vitro].
    Li FQ; Hu JH
    Yao Xue Xue Bao; 2004 May; 39(5):389-91. PubMed ID: 15338886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release.
    Paulino AT; Pereira AG; Fajardo AR; Erickson K; Kipper MJ; Muniz EC; Belfiore LA; Tambourgi EB
    Carbohydr Polym; 2012 Oct; 90(3):1216-25. PubMed ID: 22939334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of water penetration and drug concentration profiles in HPMC-based matrix tablets by near infrared chemical imaging.
    Li W; Woldu A; Araba L; Winstead D
    J Pharm Sci; 2010 Jul; 99(7):3081-8. PubMed ID: 20112431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmotic pellet system comprising osmotic core and in-process amorphized drug in polymer-surfactant layer for controlled delivery of poorly water-soluble drug.
    Saindane N; Vavia P
    J Pharm Sci; 2012 Sep; 101(9):3169-79. PubMed ID: 22418998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of ethanol on aspirin release from hypromellose matrices.
    Roberts M; Cespi M; Ford JL; Dyas AM; Downing J; Martini LG; Crowley PJ
    Int J Pharm; 2007 Mar; 332(1-2):31-7. PubMed ID: 17084050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups.
    Liu YY; Fan XD
    Biomaterials; 2005 Nov; 26(32):6367-74. PubMed ID: 15913774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly (vinyl alcohol)/SiO2 composite microsphere based on Pickering emulsion and its application in controlled drug release.
    Zhou H; Shi T; Zhou X
    J Biomater Sci Polym Ed; 2014; 25(7):641-56. PubMed ID: 24601865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs.
    Kundu J; Poole-Warren LA; Martens P; Kundu SC
    Acta Biomater; 2012 May; 8(5):1720-9. PubMed ID: 22285428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.