BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23526922)

  • 1. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.
    Karabencheva-Christova TG; Carlsson U; Balali-Mood K; Black GW; Christov CZ
    PLoS One; 2013; 8(2):e56874. PubMed ID: 23526922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles calculations of protein circular dichroism in the near ultraviolet.
    Rogers DM; Hirst JD
    Biochemistry; 2004 Aug; 43(34):11092-102. PubMed ID: 15323568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II.
    Freskgård PO; Mårtensson LG; Jonasson P; Jonsson BH; Carlsson U
    Biochemistry; 1994 Nov; 33(47):14281-8. PubMed ID: 7947839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of protein circular dichroism from first principles.
    Rogers DM; Hirst JD
    Chirality; 2004 May; 16(4):234-43. PubMed ID: 15034906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molten globule-like state of bovine carbonic anhydrase in the presence of acetonitrile.
    Safarian S; Saffarzadeh M; Zargar SJ; Moosavi-Movahedi AA
    J Biochem; 2006 Jun; 139(6):1025-33. PubMed ID: 16788053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and molecular modeling studies on binding of dorzolamide to bovine and human carbonic anhydrase II.
    Bijari N; Ghobadi S; Mahdiuni H; Khodarahmi R; Ghadami SA
    Int J Biol Macromol; 2015 Sep; 80():189-99. PubMed ID: 26093313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic investigation of sulfonamide ligands as human carbonic anhydrase II inhibitors.
    Alaei L; Khodarahmi R; Sheikh-Hasani V; Sheibani N; Moosavi-Movahedi AA
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1198-1207. PubMed ID: 30176324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism.
    Fisher SZ; Maupin CM; Budayova-Spano M; Govindasamy L; Tu C; Agbandje-McKenna M; Silverman DN; Voth GA; McKenna R
    Biochemistry; 2007 Mar; 46(11):2930-7. PubMed ID: 17319692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes and inactivation of bovine carbonic anhydrase II in 2,2,2-trifluoroethanol solutions.
    Wei X; Ding S; Jiang Y; Zeng XG; Zhou HM
    Biochemistry (Mosc); 2006; 71 Suppl 1():S77-82. PubMed ID: 16487073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of disease-linked mutations on the structure, function, stability and aggregation of human carbonic anhydrase II.
    Gupta P; Mahlawat P; Deep S
    Int J Biol Macromol; 2020 Jan; 143():472-482. PubMed ID: 31778702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive inhibitory effects of acetazolamide upon interactions with bovine carbonic anhydrase II.
    Safarian S; Bagheri F; Moosavi-Movahedi AA; Amanlou M; Sheibani N
    Protein J; 2007 Sep; 26(6):371-85. PubMed ID: 17587158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II.
    Alam MT; Yamada T; Carlsson U; Ikai A
    FEBS Lett; 2002 May; 519(1-3):35-40. PubMed ID: 12023014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TD-DFT modeling of the circular dichroism for a tryptophan zipper peptide with coupled aromatic residues.
    Roy A; Bour P; Keiderling TA
    Chirality; 2009; 21 Suppl 1():E163-71. PubMed ID: 19899143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor.
    Sreerama N; Manning MC; Powers ME; Zhang JX; Goldenberg DP; Woody RW
    Biochemistry; 1999 Aug; 38(33):10814-22. PubMed ID: 10451378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational approach for modeling electronic circular dichroism of solvated chromophores.
    Monti M; Stener M; Aschi M
    J Comput Chem; 2022 Nov; 43(30):2023-2036. PubMed ID: 36134712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of furosemide binding to human carbonic anhydrase II.
    Ranjbar S; Ghobadi S; Khodarahmi R; Nemati H
    Int J Biol Macromol; 2012 May; 50(4):910-7. PubMed ID: 22343084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation and adsorption of human carbonic anhydrase II by nanoparticles.
    Assarsson A; Pastoriza-Santos I; Cabaleiro-Lago C
    Langmuir; 2014 Aug; 30(31):9448-56. PubMed ID: 24999988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of intrinsic fluorescence of human carbonic anhydrase II upon topiramate binding: Some evidence for drug-induced molecular contraction of the protein.
    Ghobadi S; Ashrafi-Kooshk MR; Mahdiuni H; Khodarahmi R
    Int J Biol Macromol; 2018 Mar; 108():240-249. PubMed ID: 29217181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DichroCalc: Improvements in Computing Protein Circular Dichroism Spectroscopy in the Near-Ultraviolet.
    Jasim SB; Li Z; Guest EE; Hirst JD
    J Mol Biol; 2018 Jul; 430(15):2196-2202. PubMed ID: 29258819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II.
    Almstedt K; Lundqvist M; Carlsson J; Karlsson M; Persson B; Jonsson BH; Carlsson U; Hammarström P
    J Mol Biol; 2004 Sep; 342(2):619-33. PubMed ID: 15327960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.