These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23526982)

  • 1. Seasonal and regional differences in gene expression in the brain of a hibernating mammal.
    Schwartz C; Hampton M; Andrews MT
    PLoS One; 2013; 8(3):e58427. PubMed ID: 23526982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perineuronal net expression in the brain of a hibernating mammal.
    Marchand A; Schwartz C
    Brain Struct Funct; 2020 Jan; 225(1):45-56. PubMed ID: 31748912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothalamic gene expression underlying pre-hibernation satiety.
    Schwartz C; Hampton M; Andrews MT
    Genes Brain Behav; 2015 Mar; 14(3):310-8. PubMed ID: 25640202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels.
    Schwartz C; Ballinger MA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(10):R1292-300. PubMed ID: 26354846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal.
    Brauch KM; Dhruv ND; Hanse EA; Andrews MT
    Physiol Genomics; 2005 Oct; 23(2):227-34. PubMed ID: 16076930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.
    Vermillion KL; Anderson KJ; Hampton M; Andrews MT
    Physiol Genomics; 2015 Mar; 47(3):58-74. PubMed ID: 25572546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels.
    Wei Y; Zhang J; Xu S; Peng X; Yan X; Li X; Wang H; Chang H; Gao Y
    Open Biol; 2018 Oct; 8(10):. PubMed ID: 30305429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation.
    Ballinger MA; Schwartz C; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R301-R310. PubMed ID: 28077389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interactions underpinning the phenotype of hibernation in mammals.
    Andrews MT
    J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30683731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The brain 5-HT1A receptor gene expression in hibernation.
    Naumenko VS; Tkachev SE; Kulikov AV; Semenova TP; Amerhanov ZG; Smirnova NP; Popova NK
    Genes Brain Behav; 2008 Apr; 7(3):300-5. PubMed ID: 17711450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation.
    Riemondy KA; Gillen AE; White EA; Bogren LK; Hesselberth JR; Martin SL
    RNA; 2018 Nov; 24(11):1481-1495. PubMed ID: 30065024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adrenal gene expression dynamics support hibernation in 13-lined ground squirrels.
    Gillen AE; Epperson LE; Orlicky DJ; Fu R; Martin SL
    Physiol Genomics; 2023 Apr; 55(4):155-167. PubMed ID: 36847440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.
    Jinka TR; Tøien Ø; Drew KL
    J Neurosci; 2011 Jul; 31(30):10752-8. PubMed ID: 21795527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii).
    Knight JE; Narus EN; Martin SL; Jacobson A; Barnes BM; Boyer BB
    Mol Cell Biol; 2000 Sep; 20(17):6374-9. PubMed ID: 10938114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of ground squirrel mRNA levels in multiple stages of hibernation.
    Epperson LE; Martin SL
    Physiol Genomics; 2002 Aug; 10(2):93-102. PubMed ID: 12181366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothalamic hormone deficiency enables physiological anorexia in ground squirrels during hibernation.
    Mohr SM; Dai Pra R; Platt MP; Feketa VV; Shanabrough M; Varela L; Kristant A; Cao H; Merriman DK; Horvath TL; Bagriantsev SN; Gracheva EO
    Nat Commun; 2024 Jul; 15(1):5803. PubMed ID: 38987241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal protein changes support rapid energy production in hibernator brainstem.
    Epperson LE; Rose JC; Russell RL; Nikrad MP; Carey HV; Martin SL
    J Comp Physiol B; 2010 Apr; 180(4):599-617. PubMed ID: 19967378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shotgun proteomics analysis of hibernating arctic ground squirrels.
    Shao C; Liu Y; Ruan H; Li Y; Wang H; Kohl F; Goropashnaya AV; Fedorov VB; Zeng R; Barnes BM; Yan J
    Mol Cell Proteomics; 2010 Feb; 9(2):313-26. PubMed ID: 19955082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels.
    Ikeno T; Williams CT; Buck CL; Barnes BM; Yan L
    J Biol Rhythms; 2017 Jun; 32(3):246-256. PubMed ID: 28452286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.
    Hindle AG; Martin SL
    PLoS One; 2013; 8(8):e71627. PubMed ID: 23951209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.