BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 23527292)

  • 1. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.
    Nie Y; Liu H; Sun X
    PLoS One; 2013; 8(3):e60002. PubMed ID: 23527292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome.
    Nie Y; Cheng X; Chen J; Sun X
    BMC Genomics; 2014 Jun; 15(1):493. PubMed ID: 24942981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context.
    Bao F; LoVerso PR; Fisk JN; Zhurkin VB; Cui F
    Cell Cycle; 2017; 16(21):2073-2085. PubMed ID: 28820292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome.
    Fu Y; Sinha M; Peterson CL; Weng Z
    PLoS Genet; 2008 Jul; 4(7):e1000138. PubMed ID: 18654629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution profiling of histone methylations in the human genome.
    Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K
    Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells.
    Noer A; Lindeman LC; Collas P
    Stem Cells Dev; 2009 Jun; 18(5):725-36. PubMed ID: 18771397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.
    Li L; Wang Y
    J Biol Chem; 2017 Jul; 292(28):11951-11959. PubMed ID: 28546430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells.
    Shin JH; Li RW; Gao Y; Baldwin R; Li CJ
    Funct Integr Genomics; 2012 Mar; 12(1):119-30. PubMed ID: 22249597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin properties of regulatory DNA probed by manipulation of transcription factors.
    Sharov AA; Nishiyama A; Qian Y; Dudekula DB; Longo DL; Schlessinger D; Ko MS
    J Comput Biol; 2014 Aug; 21(8):569-77. PubMed ID: 24918633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation.
    Dai Z; Dai X; Xiang Q; Feng J
    Genomics Proteomics Bioinformatics; 2009 Dec; 7(4):155-62. PubMed ID: 20172488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML.
    Paul TA; Bies J; Small D; Wolff L
    Blood; 2010 Apr; 115(15):3098-108. PubMed ID: 20190193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic transcriptional regulation of the growth arrest-specific gene 1 (Gas1) in hepatic cell proliferation at mononucleosomal resolution.
    Sacilotto N; Espert A; Castillo J; Franco L; López-Rodas G
    PLoS One; 2011; 6(8):e23318. PubMed ID: 21858068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells.
    Wiencke JK; Zheng S; Morrison Z; Yeh RF
    Oncogene; 2008 Apr; 27(17):2412-21. PubMed ID: 17968314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The assessment of histone acetylation marks in the vicinity of transcription factor binding sites in human CD4 + T cells using information theory methods.
    Banirazi Motlagh N; Mohammadpour Esfahani B; Ashrafi B; Zare-Mirakabad F
    Comput Biol Chem; 2020 Jun; 86():107232. PubMed ID: 32142982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of CTCF at the miR-125b1 locus in gynecological cancers.
    Soto-Reyes E; González-Barrios R; Cisneros-Soberanis F; Herrera-Goepfert R; Pérez V; Cantú D; Prada D; Castro C; Recillas-Targa F; Herrera LA
    BMC Cancer; 2012 Jan; 12():40. PubMed ID: 22277129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation.
    Bošković A; Bender A; Gall L; Ziegler-Birling C; Beaujean N; Torres-Padilla ME
    Epigenetics; 2012 Jul; 7(7):747-57. PubMed ID: 22647320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.