BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 23527692)

  • 1. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the molecular mechanism of respiratory complex I.
    Hirst J
    Biochem J; 2009 Dec; 425(2):327-39. PubMed ID: 20025615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
    Zickermann V; Dröse S; Tocilescu MA; Zwicker K; Kerscher S; Brandt U
    J Bioenerg Biomembr; 2008 Oct; 40(5):475-83. PubMed ID: 18982432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible role for iron-sulfur cluster N2 in proton translocation by the NADH: ubiquinone oxidoreductase (complex I).
    Flemming D; Stolpe S; Schneider D; Hellwig P; Friedrich T
    J Mol Microbiol Biotechnol; 2005; 10(2-4):208-22. PubMed ID: 16645316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?
    Sherwood S; Hirst J
    Biochem J; 2006 Dec; 400(3):541-50. PubMed ID: 16895522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of respiratory complex I.
    Friedrich T
    J Bioenerg Biomembr; 2014 Aug; 46(4):255-68. PubMed ID: 25022766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of reactive oxygen species by complex I.
    Hirst J; King MS; Pryde KR
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):976-80. PubMed ID: 18793173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease.
    Bridges HR; Birrell JA; Hirst J
    Biochem Soc Trans; 2011 Jun; 39(3):799-806. PubMed ID: 21599651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.
    Le Breton N; Wright JJ; Jones AJY; Salvadori E; Bridges HR; Hirst J; Roessler MM
    J Am Chem Soc; 2017 Nov; 139(45):16319-16326. PubMed ID: 29039928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer kinetics of the mitochondrial outer membrane protein mitoNEET.
    Li X; Wang Y; Tan G; Lyu J; Ding H
    Free Radic Biol Med; 2018 Jun; 121():98-104. PubMed ID: 29704621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of ubiquinone in the proton translocation mechanism of respiratory complex I.
    Wikström M; Djurabekova A; Sharma V
    FEBS Lett; 2023 Jan; 597(2):224-236. PubMed ID: 36180980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches.
    Murai M
    Biosci Biotechnol Biochem; 2020 Jul; 84(7):1322-1331. PubMed ID: 32264779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.