These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
773 related articles for article (PubMed ID: 23527762)
41. Elevated CO₂ enhances leaf senescence during extreme drought in a temperate forest. Warren JM; Norby RJ; Wullschleger SD Tree Physiol; 2011 Feb; 31(2):117-30. PubMed ID: 21427157 [TBL] [Abstract][Full Text] [Related]
42. Spatial and temporal patterns of throughfall chemistry within a temperate mixed oak-beech stand. André F; Jonard M; Ponette Q Sci Total Environ; 2008 Jul; 397(1-3):215-28. PubMed ID: 18403000 [TBL] [Abstract][Full Text] [Related]
43. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest. Inoue Y; Ichie T; Kenzo T; Yoneyama A; Kumagai T; Nakashizuka T Tree Physiol; 2017 Oct; 37(10):1301-1311. PubMed ID: 28541561 [TBL] [Abstract][Full Text] [Related]
44. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Peña-Rojas K; Aranda X; Fleck I Tree Physiol; 2004 Jul; 24(7):813-22. PubMed ID: 15123453 [TBL] [Abstract][Full Text] [Related]
45. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
46. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Fotis AT; Curtis PS Tree Physiol; 2017 Oct; 37(10):1426-1435. PubMed ID: 28100711 [TBL] [Abstract][Full Text] [Related]
47. Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. Damour G; Vandame M; Urban L Tree Physiol; 2009 May; 29(5):675-84. PubMed ID: 19324697 [TBL] [Abstract][Full Text] [Related]
48. Effect of irradiation and canopy position on anatomical and physiological features of Fagus sylvatica and Quercus petraea leaves. Vega C; González G; Bahamonde HA; Valbuena-Carabaña M; Gil L; Fernández V Plant Physiol Biochem; 2020 Jul; 152():232-242. PubMed ID: 32449682 [TBL] [Abstract][Full Text] [Related]
49. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica). Reinert S; Bögelein R; Thomas FM Tree Physiol; 2012 Mar; 32(3):294-302. PubMed ID: 22427372 [TBL] [Abstract][Full Text] [Related]
50. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Osuna JL; Baldocchi DD; Kobayashi H; Dawson TE Tree Physiol; 2015 May; 35(5):485-500. PubMed ID: 25855663 [TBL] [Abstract][Full Text] [Related]
51. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Battie-Laclau P; Laclau JP; Beri C; Mietton L; Muniz MR; Arenque BC; DE Cassia Piccolo M; Jordan-Meille L; Bouillet JP; Nouvellon Y Plant Cell Environ; 2014 Jan; 37(1):70-81. PubMed ID: 23663049 [TBL] [Abstract][Full Text] [Related]
52. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197 [TBL] [Abstract][Full Text] [Related]
53. Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions. Kinose Y; Fukamachi Y; Okabe S; Hiroshima H; Watanabe M; Izuta T Environ Pollut; 2017 Apr; 223():213-222. PubMed ID: 28162800 [TBL] [Abstract][Full Text] [Related]
54. Physiological performance of beech (Fagus sylvatica L.) at its southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Nahm M; Radoglou K; Halyvopoulos G; Gessler A; Rennenberg H; Fotelli MN Plant Biol (Stuttg); 2006 Jan; 8(1):52-63. PubMed ID: 16435269 [TBL] [Abstract][Full Text] [Related]
55. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. Hesse BD; Hikino K; Gebhardt T; Buchhart C; Dervishi V; Goisser M; Pretzsch H; Häberle KH; Grams TEE Sci Total Environ; 2024 Nov; 951():175805. PubMed ID: 39197757 [TBL] [Abstract][Full Text] [Related]
56. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA. Wharton S; Schroeder M; Bible K; Falk M; Paw U KT Tree Physiol; 2009 Aug; 29(8):959-74. PubMed ID: 19502614 [TBL] [Abstract][Full Text] [Related]
57. Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation. Blumenröther MC; Löw M; Matyssek R; Osswald W Plant Biol (Stuttg); 2007 Mar; 9(2):207-14. PubMed ID: 17357015 [TBL] [Abstract][Full Text] [Related]
58. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Scartazza A; Moscatello S; Matteucci G; Battistelli A; Brugnoli E Tree Physiol; 2013 Jul; 33(7):730-42. PubMed ID: 23933829 [TBL] [Abstract][Full Text] [Related]
59. Foliage response of young central European oaks to air warming, drought and soil type. Günthardt-Goerg MS; Kuster TM; Arend M; Vollenweider P Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():185-97. PubMed ID: 23009690 [TBL] [Abstract][Full Text] [Related]
60. Drought response of mesophyll conductance in forest understory species--impacts on water-use efficiency and interactions with leaf water movement. Hommel R; Siegwolf R; Saurer M; Farquhar GD; Kayler Z; Ferrio JP; Gessler A Physiol Plant; 2014 Sep; 152(1):98-114. PubMed ID: 24483818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]