BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 23527873)

  • 1. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of activities of daily living (ADLs) in two different one arm drive wheelchairs: a study of individuals/participants with hemiplegia.
    Mandy A; Walton C; Michaelis J
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):108-12. PubMed ID: 24131370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of hand/handrim grip forces in two different one arm drive wheelchairs.
    Mandy A; Redhead L; Michaelis J
    Biomed Res Int; 2014; 2014():509898. PubMed ID: 25045684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of activities of daily living in two different one arm drive wheelchairs: a controlled trial.
    Bashton D; Mandy A; Haines D; Cameron J
    Disabil Rehabil Assist Technol; 2012; 7(1):75-81. PubMed ID: 21495914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability.
    Eydieux N; Hybois S; Siegel A; Bascou J; Vaslin P; Pillet H; Fodé P; Sauret C
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):305-313. PubMed ID: 30786787
    [No Abstract]   [Full Text] [Related]  

  • 8. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair propulsion: descriptive comparison of hemiplegic and two-hand patterns during selected activities.
    Kirby RL; Ethans KD; Duggan RE; Saunders-Green LA; Lugar JA; Harrison ER
    Am J Phys Med Rehabil; 1999; 78(2):131-5. PubMed ID: 10088587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of methods to compute the point of force application in handrim wheelchair propulsion: a technical note.
    Sabick MB; Zhao KD; An KN
    J Rehabil Res Dev; 2001; 38(1):57-68. PubMed ID: 11322471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.
    Lui J; MacGillivray MK; Sheel AW; Jeyasurya J; Sadeghi M; Sawatzky BJ
    J Rehabil Res Dev; 2013; 50(10):1363-72. PubMed ID: 24699972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure, and comfort in a modified wheelchair for people with hemiplegia: a controlled trial.
    Mandy A; Lesley S; Lucas K
    Disabil Rehabil Assist Technol; 2007 Sep; 2(5):255-60. PubMed ID: 19263531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimanual wheelchair propulsion by people with severe hemiparesis after stroke.
    Smith BW; Bueno DR; Zondervan DK; Montano L; Reinkensmeyer DJ
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):49-62. PubMed ID: 31248296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
    van Drongelen S; Arnet U; Veeger DH; van der Woude LH
    Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.