These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 23528098)
21. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study. Pan J; Khadka NK J Phys Chem B; 2016 May; 120(20):4625-34. PubMed ID: 27167473 [TBL] [Abstract][Full Text] [Related]
22. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations. Santo KP; Berkowitz ML J Phys Chem B; 2012 Mar; 116(9):3021-30. PubMed ID: 22303892 [TBL] [Abstract][Full Text] [Related]
23. Influence of the lipid composition on the kinetics of concerted insertion and folding of melittin in bilayers. Constantinescu I; Lafleur M Biochim Biophys Acta; 2004 Nov; 1667(1):26-37. PubMed ID: 15533303 [TBL] [Abstract][Full Text] [Related]
24. Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Raghuraman H; Chattopadhyay A Biophys J; 2007 Feb; 92(4):1271-83. PubMed ID: 17114219 [TBL] [Abstract][Full Text] [Related]
25. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Naito A; Nagao T; Norisada K; Mizuno T; Tuzi S; Saitô H Biophys J; 2000 May; 78(5):2405-17. PubMed ID: 10777736 [TBL] [Abstract][Full Text] [Related]
26. All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields. Skjevik ÅA; Madej BD; Dickson CJ; Teigen K; Walker RC; Gould IR Chem Commun (Camb); 2015 Mar; 51(21):4402-5. PubMed ID: 25679020 [TBL] [Abstract][Full Text] [Related]
27. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. Irudayam SJ; Berkowitz ML Biochim Biophys Acta; 2011 Sep; 1808(9):2258-66. PubMed ID: 21640071 [TBL] [Abstract][Full Text] [Related]
28. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides. Miyazaki Y; Okazaki S; Shinoda W Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1409-1419. PubMed ID: 30885804 [TBL] [Abstract][Full Text] [Related]
29. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions. Aliste MP; MacCallum JL; Tieleman DP Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230 [TBL] [Abstract][Full Text] [Related]
30. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores. Sun D; Forsman J; Woodward CE Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389 [TBL] [Abstract][Full Text] [Related]
31. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Lin JH; Baumgaertner A Biophys J; 2000 Apr; 78(4):1714-24. PubMed ID: 10733954 [TBL] [Abstract][Full Text] [Related]
32. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study. Miyazaki Y; Shinoda W Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183955. PubMed ID: 35526599 [TBL] [Abstract][Full Text] [Related]
33. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers. Strömstedt AA; Wessman P; Ringstad L; Edwards K; Malmsten M J Colloid Interface Sci; 2007 Jul; 311(1):59-69. PubMed ID: 17383670 [TBL] [Abstract][Full Text] [Related]
34. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations. Nishizawa M; Nishizawa K J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815 [TBL] [Abstract][Full Text] [Related]
35. How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Wang Y; Zhao T; Wei D; Strandberg E; Ulrich AS; Ulmschneider JP Biochim Biophys Acta; 2014 Sep; 1838(9):2280-8. PubMed ID: 24747526 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Schwarz G; Beschiaschvili G Biochim Biophys Acta; 1989 Feb; 979(1):82-90. PubMed ID: 2917170 [TBL] [Abstract][Full Text] [Related]
37. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Lee J; Cheng X; Swails JM; Yeom MS; Eastman PK; Lemkul JA; Wei S; Buckner J; Jeong JC; Qi Y; Jo S; Pande VS; Case DA; Brooks CL; MacKerell AD; Klauda JB; Im W J Chem Theory Comput; 2016 Jan; 12(1):405-13. PubMed ID: 26631602 [TBL] [Abstract][Full Text] [Related]
38. High impedance droplet-solid interface lipid bilayer membranes. Wang X; Ma S; Su Y; Zhang Y; Bi H; Zhang L; Han X Anal Chem; 2015 Feb; 87(4):2094-9. PubMed ID: 25600185 [TBL] [Abstract][Full Text] [Related]
39. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups. Therrien A; Lafleur M Biophys J; 2016 Jan; 110(2):400-410. PubMed ID: 26789763 [TBL] [Abstract][Full Text] [Related]
40. Molecular response and cooperative behavior during the interactions of melittin with a membrane: dissipative quartz crystal microbalance experiments and simulations. Lu N; Yang K; Yuan B; Ma Y J Phys Chem B; 2012 Aug; 116(31):9432-8. PubMed ID: 22794087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]