These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The interfacial properties of ApoA-I and an amphipathic alpha-helix consensus peptide of exchangeable apolipoproteins at the triolein/water interface. Wang L; Atkinson D; Small DM J Biol Chem; 2005 Feb; 280(6):4154-65. PubMed ID: 15695525 [TBL] [Abstract][Full Text] [Related]
3. Interfacial properties of an amphipathic alpha-helix consensus peptide of exchangeable apolipoproteins at air/water and oil/water interfaces. Wang L; Atkinson D; Small DM J Biol Chem; 2003 Sep; 278(39):37480-91. PubMed ID: 12842901 [TBL] [Abstract][Full Text] [Related]
4. Apolipoprotein C-I binds more strongly to phospholipid/triolein/water than triolein/water interfaces: a possible model for inhibiting cholesterol ester transfer protein activity and triacylglycerol-rich lipoprotein uptake. Meyers NL; Wang L; Small DM Biochemistry; 2012 Feb; 51(6):1238-48. PubMed ID: 22264166 [TBL] [Abstract][Full Text] [Related]
5. Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Wang L; Walsh MT; Small DM Proc Natl Acad Sci U S A; 2006 May; 103(18):6871-6. PubMed ID: 16636271 [TBL] [Abstract][Full Text] [Related]
6. The N-terminal (1-44) and C-terminal (198-243) peptides of apolipoprotein A-I behave differently at the triolein/water interface. Wang L; Hua N; Atkinson D; Small DM Biochemistry; 2007 Oct; 46(43):12140-51. PubMed ID: 17915945 [TBL] [Abstract][Full Text] [Related]
7. Surface behavior of apolipoprotein A-I and its deletion mutants at model lipoprotein interfaces. Wang L; Mei X; Atkinson D; Small DM J Lipid Res; 2014 Mar; 55(3):478-92. PubMed ID: 24308948 [TBL] [Abstract][Full Text] [Related]
8. C-terminus of apolipoprotein A-I removes phospholipids from a triolein/phospholipids/water interface, but the N-terminus does not: a possible mechanism for nascent HDL assembly. Mitsche MA; Small DM Biophys J; 2011 Jul; 101(2):353-61. PubMed ID: 21767487 [TBL] [Abstract][Full Text] [Related]
9. Surface tensiometry of apolipoprotein B domains at lipid interfaces suggests a new model for the initial steps in triglyceride-rich lipoprotein assembly. Mitsche MA; Packer LE; Brown JW; Jiang ZG; Small DM; McKnight CJ J Biol Chem; 2014 Mar; 289(13):9000-12. PubMed ID: 24515109 [TBL] [Abstract][Full Text] [Related]
10. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces. Meyers NL; Wang L; Gursky O; Small DM J Lipid Res; 2013 Jul; 54(7):1927-38. PubMed ID: 23670531 [TBL] [Abstract][Full Text] [Related]
11. Dynamic interfacial properties of human apolipoproteins A-IV and B-17 at the air/water and oil/water interface. Weinberg RB; Cook VR; DeLozier JA; Shelness GS J Lipid Res; 2000 Sep; 41(9):1419-27. PubMed ID: 10974049 [TBL] [Abstract][Full Text] [Related]
12. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II. Meyers NL; Larsson M; Olivecrona G; Small DM J Biol Chem; 2015 Jul; 290(29):18029-18044. PubMed ID: 26026161 [TBL] [Abstract][Full Text] [Related]
13. Interfacial properties of a complex multi-domain 490 amino acid peptide derived from apolipoprotein B (residues 292-782). Mitsche MA; Wang L; Jiang ZG; McKnight CJ; Small DM Langmuir; 2009 Feb; 25(4):2322-30. PubMed ID: 19146422 [TBL] [Abstract][Full Text] [Related]
14. Difference in lipid packing sensitivity of exchangeable apolipoproteins apoA-I and apoA-II: an important determinant for their distinctive role in lipid metabolism. Chièze L; Bolanos-Garcia VM; Le Caër G; Renault A; Vié V; Beaufils S Biochim Biophys Acta; 2012 Nov; 1818(11):2732-41. PubMed ID: 22627110 [TBL] [Abstract][Full Text] [Related]
15. Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Saito H; Lund-Katz S; Phillips MC Prog Lipid Res; 2004 Jul; 43(4):350-80. PubMed ID: 15234552 [TBL] [Abstract][Full Text] [Related]
16. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. Wang L; Martin DD; Genter E; Wang J; McLeod RS; Small DM J Lipid Res; 2009 Jul; 50(7):1340-52. PubMed ID: 19251580 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the surface activities of rat plasma apolipoproteins C-II, C-III-0, C-III-3. Krebs KE; Phillips MC; Sparks CE Biochim Biophys Acta; 1983 May; 751(3):470-3. PubMed ID: 6849956 [TBL] [Abstract][Full Text] [Related]
19. The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein. Davidson WS; Lund-Katz S; Johnson WJ; Anantharamaiah GM; Palgunachari MN; Segrest JP; Rothblat GH; Phillips MC J Biol Chem; 1994 Sep; 269(37):22975-82. PubMed ID: 8083197 [TBL] [Abstract][Full Text] [Related]
20. Effect of the surface lipid composition of reconstituted LPA-I on apolipoprotein A-I structure and lecithin: cholesterol acyltransferase activity. Sparks DL; Frank PG; Neville TA Biochim Biophys Acta; 1998 Feb; 1390(2):160-72. PubMed ID: 9507105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]