These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 23528279)

  • 1. Flow and particle deposition in the Turbuhaler: a CFD simulation.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2013 May; 448(1):205-13. PubMed ID: 23528279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.
    van Hooff T; Blocken B; van Heijst GJ
    Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
    Janiga G
    Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler.
    Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R
    Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models.
    Walters DK; Luke WH
    J Biomech Eng; 2011 Jan; 133(1):011003. PubMed ID: 21186893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E
    J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
    Sajjadi H; Tavakoli B; Ahmadi G; Dhaniyala S; Harner T; Holsen TM
    Environ Pollut; 2016 Jul; 214():410-418. PubMed ID: 27108045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a DPI Inhaler: A Computational Approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    J Pharm Sci; 2017 Mar; 106(3):850-858. PubMed ID: 27964902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modelling and experimental validation of drug entrainment in a dry powder inhaler.
    Kopsch T; Murnane D; Symons D
    Int J Pharm; 2018 Dec; 553(1-2):37-46. PubMed ID: 30316002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments.
    Nguyen D; Remmelgas J; Björn IN; van Wachem B; Thalberg K
    Int J Pharm; 2018 Aug; 547(1-2):31-43. PubMed ID: 29792988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers.
    Kim YH; Li DD; Park S; Yi DS; Yeoh GH; Abbas A
    Int J Pharm; 2022 Jan; 612():121293. PubMed ID: 34808267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study.
    Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S
    Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.