BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23528325)

  • 1. Deconvolution and simulation of thermoluminescence glow curves with Mathcad.
    Kiisk V
    Radiat Prot Dosimetry; 2013 Sep; 156(3):261-7. PubMed ID: 23528325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
    Afouxenidis D; Polymeris GS; Tsirliganis NC; Kitis G
    Radiat Prot Dosimetry; 2012 May; 149(4):363-70. PubMed ID: 21765155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the possibility of using commercial software packages for thermoluminescence glow curve deconvolution analysis.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2002; 101(1-4):93-8. PubMed ID: 12382713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fit of second order thermoluminescence glow peaks using the logistic distribution function.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2001; 95(3):225-9. PubMed ID: 11605796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fit of first order thermoluminescence glow peaks using the Weibull distribution function.
    Pagonis V; Mian SM; Kitis G
    Radiat Prot Dosimetry; 2001; 93(1):11-7. PubMed ID: 11548321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoluminescence glow curve deconvolution and its statistical analysis using the flexibility of spreadsheet programs.
    van Dijk JW
    Radiat Prot Dosimetry; 2006; 119(1-4):332-8. PubMed ID: 16731693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer program for the deconvolution of thermoluminescence glow curves.
    Chung KS; Choe HS; Lee JI; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2005; 115(1-4):343-9. PubMed ID: 16381744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TLDECOXCEL: A DYNAMIC EXCEL SPREADSHEET FOR THE COMPUTERISED CURVE DECONVOLUTION OF TL GLOW CURVES INTO DISCRETE-ENERGY AND/OR CONTINUOUS-ENERGY-DISTRIBUTION PEAKS.
    Kazakis NA
    Radiat Prot Dosimetry; 2019 Dec; 187(2):154-163. PubMed ID: 31165886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple methods to analyse thermoluminescence glow curves assuming arbitrary recombination-retrapping rates.
    Gómez-Ros JM; Furetta C; Correcher V
    Radiat Prot Dosimetry; 2006; 119(1-4):339-43. PubMed ID: 16735569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RECENT DEVELOPMENTS IN COMPUTERISED ANALYSIS OF THERMOLUMINESCENCE GLOW CURVES: SOFTWARE CODES, MECHANISMS AND DOSIMETRIC APPLICATIONS.
    Horowitz YS; Oster L; Reshes G; Nemirovsky D; Ginzburg D; Biderman S; Bokobza Y; Sterenberg M; Eliyahu I
    Radiat Prot Dosimetry; 2022 Aug; 198(12):821-842. PubMed ID: 35724429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The theory of thermoluminescence with an arbitrary spatial distribution of traps.
    Mandowski A
    Radiat Prot Dosimetry; 2002; 100(1-4):115-8. PubMed ID: 12382841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of glow curve analysis methods to improve TLD-100 dose reassessment performance.
    Delgado A; Gómez Roz JM; Muñiz JL; Portillo JC
    Health Phys; 1992 Mar; 62(3):228-34. PubMed ID: 1735642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed- and general-order kinetics applied to selected thermoluminescence glow curves.
    Maghrabi M; Al-Jundi J; Arafah DE
    Radiat Prot Dosimetry; 2008; 130(3):291-9. PubMed ID: 18337288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical study of the thermoluminescence process in K2YF5:Tb(3+).
    Kadari A; Mostefa R; Marcazzó J; Kadri D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):437-42. PubMed ID: 25543131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Thermoluminescence Glow Curves using Derivatives of different Orders.
    Karmakar M; Bhattacharyya S; Sarkar A; Mazumdar PS; Singh SD
    Radiat Prot Dosimetry; 2017 Aug; 175(4):493-502. PubMed ID: 28096312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Introduction to thermoluminescence--simple models].
    Scharmann A
    Strahlentherapie; 1985 Feb; 161(2):69-73. PubMed ID: 3975939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions.
    Benavente JF; Gómez-Ros JM; Romero AM
    Appl Radiat Isot; 2019 Nov; 153():108843. PubMed ID: 31404764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to the analysis of thermoluminescence glow-curve of TLD-600 dosimeters following Am-241 alpha particles irradiation.
    Sadek AM; Hassan MM; Esmat E; Eissa HM
    Radiat Prot Dosimetry; 2018 Feb; 178(3):260-271. PubMed ID: 28981798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of absorbed dose and deep traps on thermoluminescence response: a numerical simulation.
    Mady F; Bindi R; Iacconi P; Wrobel F
    Radiat Prot Dosimetry; 2006; 119(1-4):37-40. PubMed ID: 16644969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.