These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23528431)
1. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Muthiah M; Park IK; Cho CS Biotechnol Adv; 2013 Dec; 31(8):1224-36. PubMed ID: 23528431 [TBL] [Abstract][Full Text] [Related]
2. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. Lee CM; Cheong SJ; Kim EM; Lim ST; Jeong YY; Sohn MH; Jeong HJ J Nucl Med; 2013 Nov; 54(11):1974-80. PubMed ID: 24050935 [TBL] [Abstract][Full Text] [Related]
3. Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node. Muthiah M; Vu-Quang H; Kim YK; Rhee JH; Kang SH; Jun SY; Choi YJ; Jeong YY; Cho CS; Park IK Carbohydr Polym; 2013 Feb; 92(2):1586-95. PubMed ID: 23399193 [TBL] [Abstract][Full Text] [Related]
4. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Mahmoudi M; Sant S; Wang B; Laurent S; Sen T Adv Drug Deliv Rev; 2011; 63(1-2):24-46. PubMed ID: 20685224 [TBL] [Abstract][Full Text] [Related]
5. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Lee H; Lee E; Kim DK; Jang NK; Jeong YY; Jon S J Am Chem Soc; 2006 Jun; 128(22):7383-9. PubMed ID: 16734494 [TBL] [Abstract][Full Text] [Related]
6. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Barrow M; Taylor A; García Carrión J; Mandal P; Park BK; Poptani H; Murray P; Rosseinsky MJ; Adams DJ Contrast Media Mol Imaging; 2016 Sep; 11(5):362-370. PubMed ID: 27358113 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Kandasamy G; Maity D Int J Pharm; 2015 Dec; 496(2):191-218. PubMed ID: 26520409 [TBL] [Abstract][Full Text] [Related]
8. Bifunctional nanoparticles constructed using one-pot encapsulation of a fluorescent polymer and magnetic (Fe3O4) nanoparticles in a silica shell. Lee CS; Chang HH; Bae PK; Jung J; Chung BH Macromol Biosci; 2013 Mar; 13(3):321-31. PubMed ID: 23281296 [TBL] [Abstract][Full Text] [Related]
9. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Lee CM; Jeong HJ; Kim EM; Kim DW; Lim ST; Kim HT; Park IK; Jeong YY; Kim JW; Sohn MH Magn Reson Med; 2009 Dec; 62(6):1440-6. PubMed ID: 19859969 [TBL] [Abstract][Full Text] [Related]
10. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties. He X; Wu X; Cai X; Lin S; Xie M; Zhu X; Yan D Langmuir; 2012 Aug; 28(32):11929-38. PubMed ID: 22799877 [TBL] [Abstract][Full Text] [Related]
11. Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Ma HL; Qi XR; Ding WX; Maitani Y; Nagai T J Biomed Mater Res A; 2008 Mar; 84(3):598-606. PubMed ID: 17618488 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin. Lee IL; Li PS; Yu WL; Shen HH Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844 [TBL] [Abstract][Full Text] [Related]
13. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery. Mohammed L; Ragab D; Gomaa H Curr Pharm Des; 2016; 22(22):3332-52. PubMed ID: 26853596 [TBL] [Abstract][Full Text] [Related]
14. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Kaaki K; Hervé-Aubert K; Chiper M; Shkilnyy A; Soucé M; Benoit R; Paillard A; Dubois P; Saboungi ML; Chourpa I Langmuir; 2012 Jan; 28(2):1496-505. PubMed ID: 22172203 [TBL] [Abstract][Full Text] [Related]
15. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Wang B; Sandre O; Wang K; Shi H; Xiong K; Huang YB; Wu T; Yan M; Courtois J Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109920. PubMed ID: 31500039 [TBL] [Abstract][Full Text] [Related]
16. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Vakili-Ghartavol R; Momtazi-Borojeni AA; Vakili-Ghartavol Z; Aiyelabegan HT; Jaafari MR; Rezayat SM; Arbabi Bidgoli S Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):443-451. PubMed ID: 32024389 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Santhosh PB; Ulrih NP Cancer Lett; 2013 Aug; 336(1):8-17. PubMed ID: 23664890 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Gupta AK; Gupta M Biomaterials; 2005 Jun; 26(18):3995-4021. PubMed ID: 15626447 [TBL] [Abstract][Full Text] [Related]
19. Combined ATRP and 'click' chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles. Huang C; Neoh KG; Kang ET Langmuir; 2012 Jan; 28(1):563-71. PubMed ID: 22121942 [TBL] [Abstract][Full Text] [Related]
20. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]