These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23528498)
1. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Kim HS; Yoo HS Acta Biomater; 2013 Jul; 9(7):7371-80. PubMed ID: 23528498 [TBL] [Abstract][Full Text] [Related]
2. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Kim HS; Yoo HS Gene Ther; 2013 Apr; 20(4):378-85. PubMed ID: 22717742 [TBL] [Abstract][Full Text] [Related]
3. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. Kim HS; Yoo HS J Control Release; 2010 Aug; 145(3):264-71. PubMed ID: 20347898 [TBL] [Abstract][Full Text] [Related]
4. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Choi JS; Leong KW; Yoo HS Biomaterials; 2008 Feb; 29(5):587-96. PubMed ID: 17997153 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. Wang Z; Qian Y; Li L; Pan L; Njunge LW; Dong L; Yang L J Biomater Appl; 2016 Jan; 30(6):686-98. PubMed ID: 26012354 [TBL] [Abstract][Full Text] [Related]
6. Topical secretoneurin gene therapy accelerates diabetic wound healing by interaction between heparan-sulfate proteoglycans and basic FGF. Albrecht-Schgoer K; Schgoer W; Theurl M; Stanzl U; Lener D; Dejaco D; Zelger B; Franz WM; Kirchmair R Angiogenesis; 2014 Jan; 17(1):27-36. PubMed ID: 23918206 [TBL] [Abstract][Full Text] [Related]
7. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds. Kao CW; Tseng YY; Liu KS; Liu YW; Chen JC; He HL; Kau YC; Liu SJ Int J Nanomedicine; 2019; 14():4007-4016. PubMed ID: 31213812 [No Abstract] [Full Text] [Related]
8. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Ti D; Hao H; Xia L; Tong C; Liu J; Dong L; Xu S; Zhao Y; Liu H; Fu X; Han W Tissue Eng Part A; 2015 Feb; 21(3-4):541-9. PubMed ID: 25204972 [TBL] [Abstract][Full Text] [Related]
9. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Lai HJ; Kuan CH; Wu HC; Tsai JC; Chen TM; Hsieh DJ; Wang TW Acta Biomater; 2014 Oct; 10(10):4156-66. PubMed ID: 24814882 [TBL] [Abstract][Full Text] [Related]
11. [Clinical study of various growth factors on the improvement of impaired healing ulcers in patients with diabetic disease]. Feng J; Du WH; Wang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 1999 Sep; 13(5):273-7. PubMed ID: 12080817 [TBL] [Abstract][Full Text] [Related]
12. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Cho YI; Choi JS; Jeong SY; Yoo HS Acta Biomater; 2010 Dec; 6(12):4725-33. PubMed ID: 20601229 [TBL] [Abstract][Full Text] [Related]
13. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. Lobmann R; Zemlin C; Motzkau M; Reschke K; Lehnert H J Diabetes Complications; 2006; 20(5):329-35. PubMed ID: 16949521 [TBL] [Abstract][Full Text] [Related]
14. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Yang Y; Xia T; Chen F; Wei W; Liu C; He S; Li X Mol Pharm; 2012 Jan; 9(1):48-58. PubMed ID: 22091745 [TBL] [Abstract][Full Text] [Related]
15. Human epidermal growth factor enhances healing of diabetic foot ulcers. Tsang MW; Wong WK; Hung CS; Lai KM; Tang W; Cheung EY; Kam G; Leung L; Chan CW; Chu CM; Lam EK Diabetes Care; 2003 Jun; 26(6):1856-61. PubMed ID: 12766123 [TBL] [Abstract][Full Text] [Related]
16. Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Vranckx JJ; Hoeller D; Velander PE; Theopold CF; Petrie N; Takedo A; Eriksson E; Yao F Wound Repair Regen; 2007; 15(5):657-64. PubMed ID: 17971011 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing. Moura LI; Dias AM; Leal EC; Carvalho L; de Sousa HC; Carvalho E Acta Biomater; 2014 Feb; 10(2):843-57. PubMed ID: 24121197 [TBL] [Abstract][Full Text] [Related]
18. Dexamethasone-incorporated nanofibrous meshes for antiproliferation of smooth muscle cells: thermally induced drug-loading strategy. Son YJ; Yoo HS J Biomed Mater Res A; 2012 Oct; 100(10):2678-85. PubMed ID: 22619069 [TBL] [Abstract][Full Text] [Related]
19. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. Gümüşderelioğlu M; Dalkıranoğlu S; Aydın RS; Cakmak S J Biomed Mater Res A; 2011 Sep; 98(3):461-72. PubMed ID: 21661095 [TBL] [Abstract][Full Text] [Related]
20. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. Dwivedi C; Pandey I; Pandey H; Patil S; Mishra SB; Pandey AC; Zamboni P; Ramteke PW; Singh AV J Biomed Mater Res A; 2018 Mar; 106(3):641-651. PubMed ID: 28986947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]