BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23528569)

  • 1. Improved microcalcification visualization using dual-energy digital mammography.
    Tsai CJ; Chen RC; Peng HL; Hsu WL; Lee JJ
    Acta Radiol; 2013 Jul; 54(6):614-21. PubMed ID: 23528569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility study for the improvement of microcalcification visualization in different breast thicknesses and tissue components using a dual-energy approach in digital mammography.
    Tsai CJ; Chen RC; Hung SH; Wu J; Peng HL; Lee JJ
    J Comput Assist Tomogr; 2012; 36(4):488-94. PubMed ID: 22805681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of dual-energy digital mammography for calcification imaging.
    Kappadath SC; Shaw CC
    Phys Med Biol; 2004 Jun; 49(12):2563-76. PubMed ID: 15272674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.
    Kappadath SC; Shaw CC
    Med Phys; 2003 Jun; 30(6):1110-7. PubMed ID: 12852535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms.
    Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW
    Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of image quality on calcification detection in digital mammography.
    Warren LM; Mackenzie A; Cooke J; Given-Wilson RM; Wallis MG; Chakraborty DP; Dance DR; Bosmans H; Young KC
    Med Phys; 2012 Jun; 39(6):3202-13. PubMed ID: 22755704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose reduction in full-field digital mammography: an anthropomorphic breast phantom study.
    Obenauer S; Hermann KP; Grabbe E
    Br J Radiol; 2003 Jul; 76(907):478-82. PubMed ID: 12857708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.
    Carton AK; Bosmans H; Vandenbroucke D; Souverijns G; Van Ongeval C; Dragusin O; Marchal G
    Med Phys; 2004 Jul; 31(7):2165-76. PubMed ID: 15305471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Improvement of detectability of microcalcifications by magnification digital mammography].
    Higashida Y; Hatemura M; Yoshida A; Takada T; Takahashi M
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Aug; 58(9):473-8. PubMed ID: 9778932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dose reduction on the ability of digital mammography to detect simulated microcalcifications.
    Yakabe M; Sakai S; Yabuuchi H; Matsuo Y; Kamitani T; Setoguchi T; Cho M; Masuda M; Sasaki M
    J Digit Imaging; 2010 Oct; 23(5):520-6. PubMed ID: 19415382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-space signatures for the detection of clustered microcalculations in digital mammograms.
    Netsch T; Peitgen HO
    IEEE Trans Med Imaging; 1999 Sep; 18(9):774-86. PubMed ID: 10571382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scatter correction method for dual-energy digital mammography: Monte Carlo simulation.
    Ai K; Gao Y; Yu G
    J Xray Sci Technol; 2014; 22(5):653-71. PubMed ID: 25265925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of clinical image processing algorithms used in digital mammography.
    Zanca F; Jacobs J; Van Ongeval C; Claus F; Celis V; Geniets C; Provost V; Pauwels H; Marchal G; Bosmans H
    Med Phys; 2009 Mar; 36(3):765-75. PubMed ID: 19378737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital mammography: observer performance study of the effects of pixel size on the characterization of malignant and benign microcalcifications.
    Chan HP; Helvie MA; Petrick N; Sahiner B; Adler DD; Paramagul C; Roubidoux MA; Blane CE; Joynt LK; Wilson TE; Hadjiiski LM; Goodsitt MM
    Acad Radiol; 2001 Jun; 8(6):454-66. PubMed ID: 11394537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis.
    Samala RK; Chan HP; Hadjiiski LM; Helvie MA
    Phys Med Biol; 2016 Oct; 61(19):7092-7112. PubMed ID: 27648708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [ROC analysis comparing screen film mammography and digital mammography].
    Gaspard-Bakhach S; Dilhuydy MH; Bonichon F; Barreau B; Henriques C; Maugey-Laulom B
    J Radiol; 2000 Feb; 81(2):133-9. PubMed ID: 10705143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.