These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23528676)

  • 1. A preliminary investigation of the deconvolution of auditory evoked potentials using a session jittering paradigm.
    Wang T; Zhan C; Yan G; Bohórquez J; Özdamar Ö
    J Neural Eng; 2013 Apr; 10(2):026023. PubMed ID: 23528676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of the efficiency of techniques for deconvolving auditory-evoked potentials with high rate stimulation].
    Su Y; Wang T; Fu Q; Liang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):647-51. PubMed ID: 20649037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study.
    Bardy F; Van Dun B; Dillon H; Cowan R
    J Neural Eng; 2014 Aug; 11(4):046016. PubMed ID: 24963952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation study assessing the efficiency of deriving evoked responses using high stimulus rate.
    Wang T; Su YY; Shen Q; Ma J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5033-6. PubMed ID: 19163847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges.
    Bardy F; Van Dun B; Dillon H; McMahon CM
    Clin Neurophysiol; 2014 Apr; 125(4):814-826. PubMed ID: 24269614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods.
    Tan X; Fu Q; Yuan H; Ding L; Wang T
    Front Neurosci; 2017; 11():697. PubMed ID: 29311778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wiener filter deconvolution of overlapping evoked potentials.
    Wang T; Ozdamar O; Bohórquez J; Shen Q; Cheour M
    J Neurosci Methods; 2006 Dec; 158(2):260-70. PubMed ID: 16814393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New metric for optimizing Continuous Loop Averaging Deconvolution (CLAD) sequences under the 1/f noise model.
    Peng X; Yuan H; Chen W; Wang T; Ding L
    PLoS One; 2017; 12(4):e0175354. PubMed ID: 28414803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory middle-latency response and the 40-Hz auditory steady state response.
    McNeer RR; Bohórquez J; Ozdamar O
    Anesthesiology; 2009 May; 110(5):1026-35. PubMed ID: 19352165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age trends in auditory oddball evoked potentials via component scoring and deconvolution.
    Kerr CC; van Albada SJ; Rennie CJ; Robinson PA
    Clin Neurophysiol; 2010 Jun; 121(6):962-76. PubMed ID: 20227912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Auditory Middle-Latency Responses From Two Deconvolution Methods at 40 Hz.
    Tan XD; Peng X; Zhan CA; Wang T
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1157-66. PubMed ID: 26441440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorted averaging--application to auditory event-related responses.
    Rahne T; von Specht H; Mühler R
    J Neurosci Methods; 2008 Jul; 172(1):74-8. PubMed ID: 18499265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-to-noise ratio and frequency analysis of continuous loop averaging deconvolution (CLAD) of overlapping evoked potentials.
    Ozdamar O; Bohórquez J
    J Acoust Soc Am; 2006 Jan; 119(1):429-38. PubMed ID: 16454297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials.
    Viola FC; De Vos M; Hine J; Sandmann P; Bleeck S; Eyles J; Debener S
    Hear Res; 2012 Feb; 284(1-2):6-15. PubMed ID: 22234161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P(b)(P(1)) resonance at 40 Hz: effects of high stimulus rate on auditory middle latency responses (MLRs) explored using deconvolution.
    Ozdamar O; Bohórquez J; Ray SS
    Clin Neurophysiol; 2007 Jun; 118(6):1261-73. PubMed ID: 17466579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodology to estimate the transient evoked responses for the generation of steady state responses.
    Bohórquez J; Ozdamar O; Açikgöz N; Yavuz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2444-7. PubMed ID: 18002488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation on the Comparison of Steady-State Responses Synthesized by Transient Templates Based on Superposition Hypothesis.
    Tan XD; Yu XF; Lin L; Wang T
    Comput Math Methods Med; 2015; 2015():476050. PubMed ID: 26600868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise Attenuation Estimation for Maximum Length Sequences in Deconvolution Process of Auditory Evoked Potentials.
    Peng X; Chen Y; Wang T; Ding L; Tan X
    Comput Math Methods Med; 2017; 2017():3927486. PubMed ID: 28316637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconvolution of evoked responses obtained at high stimulus rates.
    Delgado RE; Ozdamar O
    J Acoust Soc Am; 2004 Mar; 115(3):1242-51. PubMed ID: 15058345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms.
    Luecke D; Stockmanns G; Gallinat M; Kochs EF; Schneider G
    Biomed Tech (Berl); 2007 Feb; 52(1):90-5. PubMed ID: 17313341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.