BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23528875)

  • 21. Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet.
    Geay F; Santigosa I Culi E; Corporeau C; Boudry P; Dreano Y; Corcos L; Bodin N; Vandeputte M; Zambonino-Infante JL; Mazurais D; Cahu CL
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Aug; 156(4):237-43. PubMed ID: 20363355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on leucocytes and plasma fatty acid profiles, selected immune parameters and circulating prostaglandins levels.
    Torrecillas S; Román L; Rivero-Ramírez F; Caballero MJ; Pascual C; Robaina L; Izquierdo MS; Acosta F; Montero D
    Fish Shellfish Immunol; 2017 May; 64():437-445. PubMed ID: 28359945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of conjugated linoleic acid on dietary lipids utilization, liver morphology and selected immune parameters in sea bass juveniles (Dicentrarchus labrax).
    Makol A; Torrecillas S; Fernández-Vaquero A; Robaina L; Montero D; Caballero MJ; Tort L; Izquierdo M
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Oct; 154(2):179-87. PubMed ID: 19539046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary Phytogenics and Galactomannan Oligosaccharides in Low Fish Meal and Fish Oil-Based Diets for European Sea Bass (
    Torrecillas S; Terova G; Makol A; Serradell A; Valdenegro-Vega V; Izquierdo M; Acosta F; Montero D
    Front Immunol; 2021; 12():663106. PubMed ID: 34054829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities.
    Nasopoulou C; Smith T; Detopoulou M; Tsikrika C; Papaharisis L; Barkas D; Zabetakis I
    Food Chem; 2014 Feb; 145():1097-105. PubMed ID: 24128590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles.
    Enes P; Panserat S; Kaushik S; Oliva-Teles A
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):89-96. PubMed ID: 16343962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora.
    Yang Y; Iji PA; Kocher A; Thomson E; Mikkelsen LL; Choct M
    Br Poult Sci; 2008 Mar; 49(2):186-94. PubMed ID: 18409093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels.
    Enes P; Sanchez-Gurmaches J; Navarro I; Gutiérrez J; Oliva-Teles A
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):346-53. PubMed ID: 20696267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development.
    Gisbert E; Villeneuve L; Zambonino-Infante JL; Quazuguel P; Cahu CL
    Lipids; 2005 Jun; 40(6):609-18. PubMed ID: 16149740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The partial substitution of digestible protein with gelatinized starch as an energy source reduces susceptibility to lipid oxidation in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) muscle.
    Alvarez MJ; López-Bote CJ; Diez A; Corraze G; Arzel J; Dias J; Kaushik SJ; Bautista JM
    J Anim Sci; 1999 Dec; 77(12):3322-9. PubMed ID: 10641880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genotype by diet interactions in European sea bass (Dicentrarchus labrax L.): Nutritional challenge with totally plant-based diets.
    Le Boucher R; Vandeputte M; Dupont-Nivet M; Quillet E; Ruelle F; Vergnet A; Kaushik S; Allamellou JM; Médale F; Chatain B
    J Anim Sci; 2013 Jan; 91(1):44-56. PubMed ID: 23100583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary supplementation of mannan oligosaccharide improves the immune responses and survival of marron, Cherax tenuimanus (Smith, 1912) when challenged with different stressors.
    Sang HM; Ky le T; Fotedar R
    Fish Shellfish Immunol; 2009 Aug; 27(2):341-8. PubMed ID: 19539033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of dietary β-(1,3)(1,6)-D-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.).
    Kühlwein H; Merrifield DL; Rawling MD; Foey AD; Davies SJ
    J Anim Physiol Anim Nutr (Berl); 2014 Apr; 98(2):279-89. PubMed ID: 23676107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae.
    Kotzamanis YP; Gisbert E; Gatesoupe FJ; Zambonino Infante J; Cahu C
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):205-14. PubMed ID: 17306580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves.
    Heinrichs AJ; Jones CM; Heinrichs BS
    J Dairy Sci; 2003 Dec; 86(12):4064-9. PubMed ID: 14740845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dietary mannan oligosaccharides (MOS) supplementation on metabolism, inflammatory response and gut microbiota of juvenile Nile tilapia (Oreochromis niloticus) fed with high carbohydrate diet.
    Wang T; Wu HX; Li WJ; Xu R; Qiao F; Du ZY; Zhang ML
    Fish Shellfish Immunol; 2022 Nov; 130():550-559. PubMed ID: 36179963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of dietary arginine to nitrogen utilisation and excretion in juvenile sea bass (Dicentrarchus labrax) fed diets differing in protein source.
    Tulli F; Vachot C; Tibaldi E; Fournier V; Kaushik SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):179-88. PubMed ID: 17321177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local immune response of two mucosal surfaces of the European seabass, Dicentrarchus labrax, fed tryptophan- or methionine-supplemented diets.
    Azeredo R; Machado M; Guardiola FA; Cerezuela R; Afonso A; Peres H; Oliva-Teles A; Esteban MA; Costas B
    Fish Shellfish Immunol; 2017 Nov; 70():76-86. PubMed ID: 28882794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of dietary phospholipid level and phospholipid:neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet.
    Cahu CL; Zambonino Infante JL; Barbosa V
    Br J Nutr; 2003 Jul; 90(1):21-8. PubMed ID: 12844371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax).
    Dias J; Alvarez MJ; Arzel J; Corraze G; Diez A; Bautista JM; Kaushik SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):19-31. PubMed ID: 16087375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.