BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 23528923)

  • 1. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound.
    Silchenko AN; Adamchic I; Hauptmann C; Tass PA
    Neuroimage; 2013 Aug; 77():133-47. PubMed ID: 23528923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus.
    Adamchic I; Toth T; Hauptmann C; Walger M; Langguth B; Klingmann I; Tass PA
    Neuroimage Clin; 2017; 15():541-558. PubMed ID: 28652968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counteracting tinnitus by acoustic coordinated reset neuromodulation.
    Tass PA; Adamchic I; Freund HJ; von Stackelberg T; Hauptmann C
    Restor Neurol Neurosci; 2012; 30(2):137-59. PubMed ID: 22414611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients.
    Vanneste S; van de Heyning P; De Ridder D
    Eur J Neurosci; 2011 Sep; 34(5):718-31. PubMed ID: 21848924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation.
    Adamchic I; Hauptmann C; Tass PA
    Front Syst Neurosci; 2012; 6():18. PubMed ID: 22493570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation.
    Adamchic I; Toth T; Hauptmann C; Tass PA
    Hum Brain Mapp; 2014 May; 35(5):2099-118. PubMed ID: 23907785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling.
    Tass PA; Popovych OV
    Biol Cybern; 2012 Jan; 106(1):27-36. PubMed ID: 22350536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectivity graph analysis of the auditory resting state network in tinnitus.
    Maudoux A; Lefebvre P; Cabay JE; Demertzi A; Vanhaudenhuyse A; Laureys S; Soddu A
    Brain Res; 2012 Nov; 1485():10-21. PubMed ID: 22579727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the acoustic coordinated reset (CR®) neuromodulation therapy for tinnitus: study protocol for a double-blind randomized placebo-controlled trial.
    Hoare DJ; Pierzycki RH; Thomas H; McAlpine D; Hall DA
    Trials; 2013 Jul; 14():207. PubMed ID: 23842505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the parahippocampal area by auditory cortex stimulation in tinnitus.
    De Ridder D; Vanneste S
    Brain Stimul; 2014; 7(5):709-17. PubMed ID: 25129400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex.
    Song JJ; De Ridder D; Weisz N; Schlee W; Van de Heyning P; Vanneste S
    Brain Struct Funct; 2014 May; 219(3):1113-28. PubMed ID: 23609486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).
    San Juan J; Hu XS; Issa M; Bisconti S; Kovelman I; Kileny P; Basura G
    PLoS One; 2017; 12(6):e0179150. PubMed ID: 28604786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural correlates of tinnitus-related distress.
    Vanneste S; Plazier M; der Loo Ev; de Heyning PV; Congedo M; De Ridder D
    Neuroimage; 2010 Aug; 52(2):470-80. PubMed ID: 20417285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Final common pathway for tinnitus: theoretical and clinical implications of neuroanatomical substrates.
    Shulman A; Goldstein B; Strashun AM
    Int Tinnitus J; 2009; 15(1):5-50. PubMed ID: 19842346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-Related Functional Connectivity Changes Between Auditory Cortex and Cingulate in Tinnitus.
    Vanneste S; De Ridder D
    Brain Connect; 2015 Aug; 5(6):371-83. PubMed ID: 25611454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tinnitus: therapeutic use of superficial brain stimulation.
    Langguth B; De Ridder D
    Handb Clin Neurol; 2013; 116():441-67. PubMed ID: 24112915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maladaptive neural synchrony in tinnitus: origin and restoration.
    Eggermont JJ; Tass PA
    Front Neurol; 2015; 6():29. PubMed ID: 25741316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound therapy can modulate the functional connectivity of the auditory network.
    Lv H; Chen Q; Wei X; Liu C; Zhao P; Wang Z; Yang Z; Gong S; You H; Wang Z
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Aug; 110():110323. PubMed ID: 33838149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment intranetwork connectivity can predict the outcomes in idiopathic tinnitus patients treated with sound therapy.
    Chen Q; Lv H; Wang Z; Wei X; Liu J; Zhao P; Yang Z; Gong S; Wang Z
    Hum Brain Mapp; 2021 Oct; 42(14):4762-4776. PubMed ID: 34231944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.