These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23529073)

  • 1. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location.
    Hu JS; Sun KC; Cheng CY
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2271-9. PubMed ID: 23529073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist.
    Kose A; Cereatti A; Della Croce U
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations.
    Zijlstra A; Zijlstra W
    Gait Posture; 2013 Sep; 38(4):940-4. PubMed ID: 23706507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer.
    Kobsar D; Olson C; Paranjape R; Hadjistavropoulos T; Barden JM
    Gait Posture; 2014; 39(1):553-7. PubMed ID: 24139685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerations of the waist and lower extremities over a range of gait velocities to aid in activity monitor selection for field-based studies.
    Morrow MM; Hurd WJ; Fortune E; Lugade V; Kaufman KR
    J Appl Biomech; 2014 Aug; 30(4):581-5. PubMed ID: 24610379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding.
    Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerometry-based gait analysis and its application to Parkinson's disease assessment- part 2: a new measure for quantifying walking behavior.
    Yoneyama M; Kurihara Y; Watanabe K; Mitoma H
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):999-1005. PubMed ID: 23797284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerometry: a technique for quantifying movement patterns during walking.
    Kavanagh JJ; Menz HB
    Gait Posture; 2008 Jul; 28(1):1-15. PubMed ID: 18178436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.
    Bonnet V; MazzĂ  C; Fraisse P; Cappozzo A
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of gait cycle characteristics by trunk accelerometry.
    Moe-Nilssen R; Helbostad JL
    J Biomech; 2004 Jan; 37(1):121-6. PubMed ID: 14672575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait and posture discrimination in sheep using a tri-axial accelerometer.
    Radeski M; Ilieski V
    Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.