These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23529073)

  • 21. Accelerometry based assessment of gait parameters in children.
    Brandes M; Zijlstra W; Heikens S; van Lummel R; Rosenbaum D
    Gait Posture; 2006 Dec; 24(4):482-6. PubMed ID: 16427287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association between walking speed and age in healthy, free-living individuals using mobile accelerometry--a cross-sectional study.
    Schimpl M; Moore C; Lederer C; Neuhaus A; Sambrook J; Danesh J; Ouwehand W; Daumer M
    PLoS One; 2011; 6(8):e23299. PubMed ID: 21853107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of walking speed on the gait of king penguins: An accelerometric approach.
    Willener AS; Handrich Y; Halsey LG; Strike S
    J Theor Biol; 2015 Dec; 387():166-73. PubMed ID: 26427338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait analysis using gravitational acceleration measured by wearable sensors.
    Takeda R; Tadano S; Todoh M; Morikawa M; Nakayasu M; Yoshinari S
    J Biomech; 2009 Feb; 42(3):223-33. PubMed ID: 19121522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3D path of body centre of mass during adult human walking on force treadmill.
    Tesio L; Rota V; Chessa C; Perucca L
    J Biomech; 2010 Mar; 43(5):938-44. PubMed ID: 19959172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of correcting for individual differences in the clinical diagnosis of gait disorders.
    Senden R; Meijer K; Heyligers IC; Savelberg HH; Grimm B
    Physiotherapy; 2012 Dec; 98(4):320-4. PubMed ID: 23122438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.
    Fortune E; Lugade V; Morrow M; Kaufman K
    Med Eng Phys; 2014 Jun; 36(6):659-69. PubMed ID: 24656871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in axial stiffness of the trunk as a function of walking speed.
    Kubo M; Holt KG; Saltzman E; Wagenaar RC
    J Biomech; 2006; 39(4):750-7. PubMed ID: 16439245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle.
    Chapinal N; de Passillé AM; Pastell M; Hänninen L; Munksgaard L; Rushen J
    J Dairy Sci; 2011 Jun; 94(6):2895-901. PubMed ID: 21605759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects.
    Saremi K; Marehbian J; Yan X; Regnaux JP; Elashoff R; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2006 Jun; 20(2):297-305. PubMed ID: 16679506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting metabolic rate during level and uphill outdoor walking using a low-cost GPS receiver.
    de Müllenheim PY; Dumond R; Gernigon M; Mahé G; Lavenu A; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    J Appl Physiol (1985); 2016 Aug; 121(2):577-88. PubMed ID: 27402559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.