These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23529105)

  • 41. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.
    Mooney LM; Rouse EJ; Herr HM
    J Neuroeng Rehabil; 2014 May; 11():80. PubMed ID: 24885527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ; Hicks JL; Delp SL; Sawicki GS
    J Exp Biol; 2014 Nov; 217(Pt 22):4018-28. PubMed ID: 25278469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autonomous exoskeleton reduces metabolic cost of human walking.
    Mooney LM; Rouse EJ; Herr HM
    J Neuroeng Rehabil; 2014 Nov; 11():151. PubMed ID: 25367552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural compensation within the human triceps surae during prolonged walking.
    Cronin NJ; Peltonen J; Sinkjaer T; Avela J
    J Neurophysiol; 2011 Feb; 105(2):548-53. PubMed ID: 21160002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exotendons for assistance of human locomotion.
    van den Bogert AJ
    Biomed Eng Online; 2003 Oct; 2():17. PubMed ID: 14613503
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variable Cadence Walking and Ground Adaptive Standing With a Powered Ankle Prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):495-505. PubMed ID: 25955789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inter-segmental coordination: motor pattern in humans stepping over an obstacle with mechanical ankle joint friction.
    Gueguen N; Charbonneau M; Robert G; Coyle T; Prince F; Mouchnino L
    J Biomech; 2005 Jul; 38(7):1491-500. PubMed ID: 15922760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autonomous exoskeleton reduces metabolic cost of walking.
    Mooney LM; Rouse EJ; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3065-8. PubMed ID: 25570638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.