These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2352930)

  • 1. Hydroxyl hydrogen conformations in trypsin determined by the neutron diffraction solvent difference map method: relative importance of steric and electrostatic factors in defining hydrogen-bonding geometries.
    Kossiakoff AA; Shpungin J; Sintchak MD
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4468-72. PubMed ID: 2352930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron structure of subtilisin BPN': effects of chemical environment on hydrogen-bonding geometries and the pattern of hydrogen-deuterium exchange in secondary structure elements.
    Kossiakoff AA; Ultsch M; White S; Eigenbrot C
    Biochemistry; 1991 Feb; 30(5):1211-21. PubMed ID: 1991100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures.
    McDowell RS; Kossiakoff AA
    Basic Life Sci; 1996; 64():273-87. PubMed ID: 9092457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of neutron diffraction and molecular dynamics structures: hydroxyl group and water molecule orientations in trypsin.
    McDowell RS; Kossiakoff AA
    J Mol Biol; 1995 Jul; 250(4):553-70. PubMed ID: 7616573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison.
    Brünger AT; Karplus M
    Proteins; 1988; 4(2):148-56. PubMed ID: 3227015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding.
    Bass MB; Hopkins DF; Jaquysh WA; Ornstein RL
    Proteins; 1992 Mar; 12(3):266-77. PubMed ID: 1372979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
    Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM
    Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.
    Oksanen E; Chen JC; Fisher SZ
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28387738
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of the neutron diffraction--H/D exchange technique to determine the conformational dynamics of trypsin.
    Kossiakoff AA
    Basic Life Sci; 1984; 27():281-304. PubMed ID: 6712567
    [No Abstract]   [Full Text] [Related]  

  • 12. Looking at hydrogen bonds in cellulose.
    Nishiyama Y; Langan P; Wada M; Forsyth VT
    Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1172-7. PubMed ID: 21041932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique.
    Kossiakoff AA
    Nature; 1982 Apr; 296(5859):713-21. PubMed ID: 7070514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On hydrogen bonding in 1,6-anhydro-beta-D-glucopyranose (levoglucosan): X-ray and neutron diffraction and DFT study.
    Smrcok L; Sládkovicová M; Langer V; Wilson CC; Koós M
    Acta Crystallogr B; 2006 Oct; 62(Pt 5):912-8. PubMed ID: 16983171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps.
    Schnupf U; Willett JL; Bosma WB; Momany FA
    Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa.
    Zhou Y; Johnson ME
    J Mol Recognit; 1999; 12(4):235-41. PubMed ID: 10440994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of carbon-donor hydrogen bonds in stabilizing tryptophan conformations.
    Petrella RJ; Karplus M
    Proteins; 2004 Mar; 54(4):716-26. PubMed ID: 14997567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry.
    Hyung SJ; Feng X; Che Y; Stroh JG; Shapiro M
    Anal Bioanal Chem; 2014 Sep; 406(24):5785-94. PubMed ID: 25064599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended and clustered conformers of epothilone A.
    Rusinska-Roszak D; Tatka H; Pawlak R; Lozynski M
    J Phys Chem B; 2011 Apr; 115(13):3698-707. PubMed ID: 21405036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-bonding network in anhydrous chitosan from neutron crystallography and periodic density functional theory calculations.
    Ogawa Y; Naito PK; Nishiyama Y
    Carbohydr Polym; 2019 Mar; 207():211-217. PubMed ID: 30600001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.