BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 23529404)

  • 1. New evidence supports the notion that microRNA-140 may play a role in the early stages of bone development.
    Nicolas FE; Dalmay T
    Arthritis Rheum; 2013 Jun; 65(6):1668-9. PubMed ID: 23529404
    [No Abstract]   [Full Text] [Related]  

  • 2. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction.
    Dunn W; DuRaine G; Reddi AH
    Arthritis Rheum; 2009 Aug; 60(8):2333-9. PubMed ID: 19644847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation.
    Ning G; Liu X; Dai M; Meng A; Wang Q
    Dev Cell; 2013 Feb; 24(3):283-95. PubMed ID: 23410941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering.
    Hong E; Reddi AH
    Tissue Eng Part B Rev; 2012 Dec; 18(6):445-53. PubMed ID: 22670839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN.
    Reddi AH
    Arthritis Res; 2001; 3(1):1-5. PubMed ID: 11178121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis.
    Burr DB
    J Rheumatol; 2005 Jun; 32(6):1156-8; discussion 1158-9. PubMed ID: 15977355
    [No Abstract]   [Full Text] [Related]  

  • 7. Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development.
    Wenke AK; Bosserhoff AK
    FEBS J; 2010 Feb; 277(4):894-902. PubMed ID: 20050923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the role of microRNAs in brain tumors (review).
    Catania A; Maira F; Skarmoutsou E; D'Amico F; Abounader R; Mazzarino MC
    Int J Oncol; 2012 Mar; 40(3):605-24. PubMed ID: 22179098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype.
    Karlsen TA; Shahdadfar A; Brinchmann JE
    Tissue Eng Part C Methods; 2011 Feb; 17(2):219-27. PubMed ID: 20799885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA expression in zebrafish embryonic development.
    Wienholds E; Kloosterman WP; Miska E; Alvarez-Saavedra E; Berezikov E; de Bruijn E; Horvitz HR; Kauppinen S; Plasterk RH
    Science; 2005 Jul; 309(5732):310-1. PubMed ID: 15919954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrite and nitrotyrosine concentrations in articular cartilage, subchondral bone, and trabecular bone of normal juvenile, normal adult, and osteoarthritic adult equine metacarpophalangeal joints.
    van der Harst M; Bull S; Brama PA; Barneveld AB; van Weeren PR; van de Lest C
    J Rheumatol; 2006 Aug; 33(8):1662-7. PubMed ID: 16881122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular biologic aspects of cartilage and bone: potential clinical applications.
    Engstrand T
    Ups J Med Sci; 2003; 108(1):25-35. PubMed ID: 12903835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrier to material transfer at the bone-cartilage interface: measurement with hydrogen gas in vivo.
    Ogata K; Whiteside LA
    Clin Orthop Relat Res; 1979; (145):273-6. PubMed ID: 535282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages.
    Chen T; Huang Z; Wang L; Wang Y; Wu F; Meng S; Wang C
    Cardiovasc Res; 2009 Jul; 83(1):131-9. PubMed ID: 19377067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of subchondral bone in the initiation and progression of cartilage damage.
    Radin EL; Rose RM
    Clin Orthop Relat Res; 1986 Dec; (213):34-40. PubMed ID: 3780104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type IIA procollagen: expression in developing chicken limb cartilage and human osteoarthritic articular cartilage.
    Nah HD; Swoboda B; Birk DE; Kirsch T
    Dev Dyn; 2001 Apr; 220(4):307-22. PubMed ID: 11307165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mini-review: microRNA in arthritis.
    Nakasa T; Nagata Y; Yamasaki K; Ochi M
    Physiol Genomics; 2011 May; 43(10):566-70. PubMed ID: 21325061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glucosamine: its value for the metabolism of articular cartilage. 1. Biochemistry of proteoglycans, studies on in-vitro cultures of embryonal mouse fibroblasts and bone germs].
    Vidal y Plana RR; Karzel K
    Fortschr Med; 1980 Apr; 98(15):557-62. PubMed ID: 6446513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cutting edge on research of cartilage metabolism. Recent progress in bio-molecular imaging of articular cartilage].
    Oohashi T; Nishida K
    Clin Calcium; 2011 Jun; 21(6):896-902. PubMed ID: 21628805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of bone morphogenetic proteins, cartilage-derived morphogenetic proteins and related receptors in normal and osteoarthritic human articular cartilage.
    Bobinac D; Spanjol J; Marinović M; Zoricić Cvek S; Marić I; Cicvarić T; Fuckar D; Markić D; Vojniković B
    Coll Antropol; 2008 Oct; 32 Suppl 2():83-7. PubMed ID: 19138012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.