These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23529422)

  • 1. Two-electrode voltage clamp.
    Guan B; Chen X; Zhang H
    Methods Mol Biol; 2013; 998():79-89. PubMed ID: 23529422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel openers using QPatch HT.
    Zhang XF; Zhang D; Surowy CS; Yao B; Jarvis MF; McGaraughty S; Neelands TR
    Assay Drug Dev Technol; 2013 Feb; 11(1):17-24. PubMed ID: 23002961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage clamp recordings from Xenopus oocytes.
    Dascal N
    Curr Protoc Neurosci; 2001 May; Chapter 6():Unit 6.12. PubMed ID: 18428511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels.
    Surti TS; Huang L; Jan YN; Jan LY; Cooper EC
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17828-33. PubMed ID: 16319223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Lab Chip; 2008 Nov; 8(11):1809-18. PubMed ID: 18941679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Biosens Bioelectron; 2007 Jun; 22(12):3196-202. PubMed ID: 17416513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2.
    Murata Y; Okamura Y
    J Physiol; 2007 Sep; 583(Pt 3):875-89. PubMed ID: 17615106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion channel reporter for monitoring the activity of engineered GPCRs.
    Moreau CJ; Niescierowicz K; Caro LN; Revilloud J; Vivaudou M
    Methods Enzymol; 2015; 556():425-54. PubMed ID: 25857794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
    Maljevic S; Lerche C; Seebohm G; Alekov AK; Busch AE; Lerche H
    J Physiol; 2003 Apr; 548(Pt 2):353-60. PubMed ID: 12640002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of novel KCNQ2 mutations found in patients with Benign Familial Neonatal Convulsions.
    Volkers L; Rook MB; Das JH; Verbeek NE; Groenewegen WA; van Kempen MJ; Lindhout D; Koeleman BP
    Neurosci Lett; 2009 Oct; 462(1):24-9. PubMed ID: 19559753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perforated whole-cell patch-clamp recording.
    Linley JE
    Methods Mol Biol; 2013; 998():149-57. PubMed ID: 23529427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Electrophysiological Assay for Kv7 Modulators on IonWorks Barracuda.
    Wilenkin B; Burris KD; Eastwood BJ; Sher E; Williams AC; Priest BT
    Assay Drug Dev Technol; 2019 Oct; 17(7):310-321. PubMed ID: 31634018
    [No Abstract]   [Full Text] [Related]  

  • 16. Calmodulin regulates the trafficking of KCNQ2 potassium channels.
    Etxeberria A; Aivar P; Rodriguez-Alfaro JA; Alaimo A; Villacé P; Gómez-Posada JC; Areso P; Villarroel A
    FASEB J; 2008 Apr; 22(4):1135-43. PubMed ID: 17993630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum.
    Singh NA; Westenskow P; Charlier C; Pappas C; Leslie J; Dillon J; Anderson VE; Sanguinetti MC; Leppert MF;
    Brain; 2003 Dec; 126(Pt 12):2726-37. PubMed ID: 14534157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated higher-throughput compound screening on ion channel targets based on the Xenopus laevis oocyte expression system.
    Pehl U; Leisgen C; Gampe K; Guenther E
    Assay Drug Dev Technol; 2004 Oct; 2(5):515-24. PubMed ID: 15671649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes.
    Kesinger E; Liu J; Jensen A; Chia CP; Demers A; Moriyama H
    PLoS One; 2018; 13(6):e0199227. PubMed ID: 29927982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.