These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23529422)

  • 21. Validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel enhancers using IonWorks HT.
    Jow F; Shen R; Chanda P; Tseng E; Zhang H; Kennedy J; Dunlop J; Bowlby MR
    J Biomol Screen; 2007 Dec; 12(8):1059-67. PubMed ID: 18087070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides.
    Buckingham SD; Pym L; Sattelle DB
    Methods Mol Biol; 2006; 322():331-45. PubMed ID: 16739734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional expression of type 1 rat GABA transporter in microinjected Xenopus laevis oocytes.
    Giovannardi S; Soragna A; Magagnin S; Faravelli L
    Methods Mol Biol; 2007; 375():235-55. PubMed ID: 17634605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.
    Cens T; Charnet P
    Methods Mol Biol; 2014; 1183():355-69. PubMed ID: 25023320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability.
    Shahidullah M; Santarelli LC; Wen H; Levitan IB
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16454-9. PubMed ID: 16263935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 1999 Jun; 76(6):3118-27. PubMed ID: 10354436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons.
    Wladyka CL; Kunze DL
    J Physiol; 2006 Aug; 575(Pt 1):175-89. PubMed ID: 16777937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The roboocyte: automated electrophysiology based on Xenopus oocytes.
    Leisgen C; Kuester M; Methfessel C
    Methods Mol Biol; 2007; 403():87-109. PubMed ID: 18827989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator.
    Wickenden AD; Krajewski JL; London B; Wagoner PK; Wilson WA; Clark S; Roeloffs R; McNaughton-Smith G; Rigdon GC
    Mol Pharmacol; 2008 Mar; 73(3):977-86. PubMed ID: 18089837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recording macroscopic currents in large patches from Xenopus oocytes.
    Rohacs T
    Methods Mol Biol; 2013; 998():119-31. PubMed ID: 23529425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
    Rudokas MW; Varga Z; Schubert AR; Asaro AB; Silva JR
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment.
    Rasmussen HB; Frøkjaer-Jensen C; Jensen CS; Jensen HS; Jørgensen NK; Misonou H; Trimmer JS; Olesen SP; Schmitt N
    J Cell Sci; 2007 Mar; 120(Pt 6):953-63. PubMed ID: 17311847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.
    Padilla K; Wickenden AD; Gerlach AC; McCormack K
    Neurosci Lett; 2009 Nov; 465(2):138-42. PubMed ID: 19733209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.
    Schroeder BC; Kubisch C; Stein V; Jentsch TJ
    Nature; 1998 Dec; 396(6712):687-90. PubMed ID: 9872318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of heterologously expressed transporter genes by patch- and voltage-clamp methods: application to cyclic nucleotide-dependent responses.
    Lemtiri-Chlieh F; Ali R
    Methods Mol Biol; 2013; 1016():67-93. PubMed ID: 23681573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological analysis of ATP-sensitive potassium channels in mammalian cells and Xenopus oocytes.
    Shieh CC; Gopalakrishnan M
    Curr Protoc Pharmacol; 2003 Jul; Chapter 11():Unit11.6. PubMed ID: 21956803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-electrode voltage clamp of Xenopus oocytes under high hydrostatic pressure.
    Schmalwasser H; Neef A; Elliott AA; Heinemann SH
    J Neurosci Methods; 1998 Jun; 81(1-2):1-7. PubMed ID: 9696303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage Clamp Fluorometry: Illuminating the Dynamics of Ion Channels.
    Sastre D; Fedida D
    Methods Mol Biol; 2024; 2796():119-138. PubMed ID: 38856899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes.
    Cohen R; Atlas D
    Neuroscience; 2004; 128(4):831-41. PubMed ID: 15464290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.