These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23529425)

  • 21. Single-channel properties of native and cloned rat vanilloid receptors.
    Premkumar LS; Agarwal S; Steffen D
    J Physiol; 2002 Nov; 545(1):107-17. PubMed ID: 12433953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage Clamp Fluorometry: Illuminating the Dynamics of Ion Channels.
    Sastre D; Fedida D
    Methods Mol Biol; 2024; 2796():119-138. PubMed ID: 38856899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Transport Activity of SLC11 Transporters in
    Cinquetti R; Imperiali FG; Bozzaro S; Zanella D; Vacca F; Roseti C; Peracino B; Castagna M; Bossi E
    SLAS Discov; 2021 Jul; 26(6):798-810. PubMed ID: 33825579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.
    Cens T; Charnet P
    Methods Mol Biol; 2014; 1183():355-69. PubMed ID: 25023320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct injection of cell-free Kir1.1 protein into Xenopus oocytes replicates single-channel currents derived from Kir1.1 mRNA.
    Sackin H; Nanazashvili M; Makino S
    Channels (Austin); 2015; 9(4):196-9. PubMed ID: 26102359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.
    Dharia S; Rabbitt RD
    PLoS One; 2011 Feb; 6(2):e17363. PubMed ID: 21387000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of extracellular, ion-selective microelectrodes to study the function of heterologously expressed transporters in Xenopus oocytes.
    Parker MD; Musa-Aziz R; Boron WF
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1243; author reply C1244. PubMed ID: 19411590
    [No Abstract]   [Full Text] [Related]  

  • 29. Functional expression of type 1 rat GABA transporter in microinjected Xenopus laevis oocytes.
    Giovannardi S; Soragna A; Magagnin S; Faravelli L
    Methods Mol Biol; 2007; 375():235-55. PubMed ID: 17634605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes.
    Bertin E; Martínez A; Boué-Grabot E
    Methods Mol Biol; 2020; 2041():243-259. PubMed ID: 31646494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple in vivo method for assessing changes of membrane-bound ion channel density in Xenopus oocytes.
    Awayda MS; Shao W; Vukojicic I; Bengrine A
    Methods Mol Biol; 2006; 337():101-15. PubMed ID: 16929942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Further characteristics of the Ca(2+)-inactivated Cl(-) channel in Xenopus laevis oocytes.
    Amasheh S; Weber W
    J Membr Biol; 1999 Nov; 172(2):169-79. PubMed ID: 10556364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes.
    Gribble FM; Ashfield R; Ammälä C; Ashcroft FM
    J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):87-98. PubMed ID: 9023770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane.
    Furuichi T; Iida H; Sokabe M; Tatsumi H
    Plant Signal Behav; 2012 Aug; 7(8):1022-6. PubMed ID: 22751361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kir 2.2 inward rectifier potassium channels are inhibited by an endogenous factor in Xenopus oocytes independently from the action of a mitochondrial uncoupler.
    Collins A; Larson MK
    J Cell Physiol; 2009 Apr; 219(1):8-13. PubMed ID: 19016473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast luminometric and Xenopus oocyte electrophysiological examinations of the molecular mechanosensitivity of TRPV4.
    Teng J; Loukin S; Zhou X; Kung C
    J Vis Exp; 2013 Dec; (82):. PubMed ID: 24637628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opposite effects of pH on open-state probability and single channel conductance of kir4.1 channels.
    Yang Z; Jiang C
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):921-7. PubMed ID: 10545154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity of Kir6.2-SUR1 currents, in the absence and presence of sodium azide, to the K(ATP) channel inhibitors, ciclazindol and englitazone.
    McKay NG; Kinsella JM; Campbell CM; Ashford ML
    Br J Pharmacol; 2000 Jun; 130(4):857-66. PubMed ID: 10864893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.