BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 2352943)

  • 1. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model.
    Sved J; Bird A
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4692-6. PubMed ID: 2352943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The loss of CpC dinucleotides from DNA. II. Methylated and non-methylated genes of vertebrates].
    Mazin AL; Vaniushin BF
    Mol Biol (Mosk); 1987; 21(2):552-62. PubMed ID: 3600628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes.
    Cooper DN; Krawczak M
    Hum Genet; 1989 Sep; 83(2):181-8. PubMed ID: 2777259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene.
    Bird AP; Taggart MH; Nicholls RD; Higgs DR
    EMBO J; 1987 Apr; 6(4):999-1004. PubMed ID: 3595568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylation-driven model for analysis of dinucleotide evolution in genomes.
    Sun JH; Ai SM; Liu SQ
    Theor Biol Med Model; 2020 Apr; 17(1):3. PubMed ID: 32264909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency of abnormal human haemoglobins caused by C----T transitions in CpG dinucleotides.
    Perutz MF
    J Mol Biol; 1990 May; 213(2):203-6. PubMed ID: 2342101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetrical distribution of CpG in an 'average' mammalian gene.
    McClelland M; Ivarie R
    Nucleic Acids Res; 1982 Dec; 10(23):7865-77. PubMed ID: 7155899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The loss of dinucleotides CpG from DNA. IV. Methylation and divergence of genes and pseudogenes of small nuclear RNA].
    Mazin AL; Vaniushin BF
    Mol Biol (Mosk); 1987; 21(4):1099-109. PubMed ID: 3657781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CpG islands in vertebrate genomes.
    Gardiner-Garden M; Frommer M
    J Mol Biol; 1987 Jul; 196(2):261-82. PubMed ID: 3656447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why does the human factor IX gene have a G + C content of 40%?
    Bottema CD; Bottema MJ; Ketterling RP; Yoon HS; Janco RL; Phillips JA; Sommer SS
    Am J Hum Genet; 1991 Oct; 49(4):839-50. PubMed ID: 1897528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency of abnormal human haemoglobins caused by C----T transitions in CpG dinucleotides.
    Perutz MF
    Biophys Chem; 1990 Aug; 37(1-3):25-9. PubMed ID: 2285785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline.
    Yang AS; Gonzalgo ML; Zingg JM; Millar RP; Buckley JD; Jones PA
    J Mol Biol; 1996 May; 258(2):240-50. PubMed ID: 8627622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.
    Upadhyay M; Samal J; Kandpal M; Vasaikar S; Biswas B; Gomes J; Vivekanandan P
    J Virol; 2013 Dec; 87(24):13816-24. PubMed ID: 24109231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of the dinucleotide CpG and cytosine methylation in the vitellogenin gene family.
    Cooper DN; Gerber-Huber S; Nardelli D; Schubiger JL; Wahli W
    J Mol Evol; 1987; 25(2):107-15. PubMed ID: 3116270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The incidence and distribution of CpG----TpG transitions in the coagulation factor IX gene. A fresh look at CpG mutational hotspots.
    Green PM; Montandon AJ; Bentley DR; Ljung R; Nilsson IM; Giannelli F
    Nucleic Acids Res; 1990 Jun; 18(11):3227-31. PubMed ID: 1972560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomic study reveals a transition from TA richness in invertebrates to GC richness in vertebrates at CpG flanking sites: an indication for context-dependent mutagenicity of methylated CpG sites.
    Wang Y; Leung FC
    Genomics Proteomics Bioinformatics; 2008 Dec; 6(3-4):144-54. PubMed ID: 19329065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rates of G:C-->T:A and G:C-->C:G transversions at CpG dinucleotides in the human factor IX gene.
    Ketterling RP; Vielhaber E; Sommer SS
    Am J Hum Genet; 1994 May; 54(5):831-5. PubMed ID: 8178822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals.
    Simmen MW
    Genomics; 2008 Jul; 92(1):33-40. PubMed ID: 18485662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The loss of CpG dinucleotides from DNA. I. Methylated and non-methylated genome compartments in eukaryotes with different levels of 5-methylcytosine in DNA].
    Mazin AL; Vaniushin BF
    Mol Biol (Mosk); 1987; 21(2):543-51. PubMed ID: 3600627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact.
    Duret L; Galtier N
    Mol Biol Evol; 2000 Nov; 17(11):1620-5. PubMed ID: 11070050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.