These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 23529607)

  • 1. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas.
    Wang P; Chen L; Wang R; Ji Y; Zhai D; Wu X; Liu Y; Chen K; Xu H
    Nanoscale; 2013 May; 5(9):3889-94. PubMed ID: 23529607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.
    Ben-Moshe A; Maoz BM; Govorov AO; Markovich G
    Chem Soc Rev; 2013 Aug; 42(16):7028-41. PubMed ID: 23788027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods.
    Auguié B; Alonso-Gómez JL; Guerrero-Martínez A; Liz-Marzán LM
    J Phys Chem Lett; 2011 Apr; 2(8):846-51. PubMed ID: 26295617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies.
    Maoz BM; van der Weegen R; Fan Z; Govorov AO; Ellestad G; Berova N; Meijer EW; Markovich G
    J Am Chem Soc; 2012 Oct; 134(42):17807-13. PubMed ID: 23039182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures.
    Liu Y; Wang R; Zhang X
    Opt Express; 2014 Feb; 22(4):4357-70. PubMed ID: 24663759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains.
    Martens K; Binkowski F; Nguyen L; Hu L; Govorov AO; Burger S; Liedl T
    Nat Commun; 2021 Apr; 12(1):2025. PubMed ID: 33795690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of orientation on plasmonic coupling between gold nanorods.
    Tabor C; Van Haute D; El-Sayed MA
    ACS Nano; 2009 Nov; 3(11):3670-8. PubMed ID: 19891438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.
    Govorov AO; Fan Z
    Chemphyschem; 2012 Jul; 13(10):2551-60. PubMed ID: 22344931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons.
    Hentschel M; Wu L; Schäferling M; Bai P; Li EP; Giessen H
    ACS Nano; 2012 Nov; 6(11):10355-65. PubMed ID: 23078518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles.
    Lu J; Chang YX; Zhang NN; Wei Y; Li AJ; Tai J; Xue Y; Wang ZY; Yang Y; Zhao L; Lu ZY; Liu K
    ACS Nano; 2017 Apr; 11(4):3463-3475. PubMed ID: 28332821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular dichroism from single plasmonic nanostructures with extrinsic chirality.
    Lu X; Wu J; Zhu Q; Zhao J; Wang Q; Zhan L; Ni W
    Nanoscale; 2014 Nov; 6(23):14244-53. PubMed ID: 25307740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications.
    John N; Mariamma AT
    Mikrochim Acta; 2021 Nov; 188(12):424. PubMed ID: 34811580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-area 3D chiral plasmonic structures.
    Frank B; Yin X; Schäferling M; Zhao J; Hein SM; Braun PV; Giessen H
    ACS Nano; 2013 Jul; 7(7):6321-9. PubMed ID: 23806025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.