These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 23529669)
1. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes. Bhattacharya J; Wolverton C Phys Chem Chem Phys; 2013 May; 15(17):6486-98. PubMed ID: 23529669 [TBL] [Abstract][Full Text] [Related]
2. First-Principles Study of Lithium Cobalt Spinel Oxides: Correlating Structure and Electrochemistry. Kim S; Hegde VI; Yao Z; Lu Z; Amsler M; He J; Hao S; Croy JR; Lee E; Thackeray MM; Wolverton C ACS Appl Mater Interfaces; 2018 Apr; 10(16):13479-13490. PubMed ID: 29616800 [TBL] [Abstract][Full Text] [Related]
3. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. Nakayama M; Kaneko M; Wakihara M Phys Chem Chem Phys; 2012 Oct; 14(40):13963-70. PubMed ID: 22986640 [TBL] [Abstract][Full Text] [Related]
5. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells. Lee E; Blauwkamp J; Castro FC; Wu J; Dravid VP; Yan P; Wang C; Kim S; Wolverton C; Benedek R; Dogan F; Park JS; Croy JR; Thackeray MM ACS Appl Mater Interfaces; 2016 Oct; 8(41):27720-27729. PubMed ID: 27700026 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Meng YS; Arroyo-de Dompablo ME Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876 [TBL] [Abstract][Full Text] [Related]
7. Ab Initio Study of Sodium Insertion in the λ-Mn Vasileiadis A; Carlsen B; de Klerk NJJ; Wagemaker M Chem Mater; 2018 Oct; 30(19):6646-6659. PubMed ID: 30344371 [TBL] [Abstract][Full Text] [Related]
8. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium-O2 Batteries. Mohamed SG; Tsai YQ; Chen CJ; Tsai YT; Hung TF; Chang WS; Liu RS ACS Appl Mater Interfaces; 2015 Jun; 7(22):12038-46. PubMed ID: 25984925 [TBL] [Abstract][Full Text] [Related]
9. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664 [TBL] [Abstract][Full Text] [Related]
10. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
11. Migration of Mn cations in delithiated lithium manganese oxides. Kan Y; Hu Y; Lin CK; Ren Y; Sun YK; Amine K; Chen Z Phys Chem Chem Phys; 2014 Oct; 16(38):20697-702. PubMed ID: 25162360 [TBL] [Abstract][Full Text] [Related]
12. A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. Kim S; Ma X; Ong SP; Ceder G Phys Chem Chem Phys; 2012 Nov; 14(44):15571-8. PubMed ID: 23076452 [TBL] [Abstract][Full Text] [Related]
13. Mg intercalation in layered and spinel host crystal structures for Mg batteries. Emly A; Van der Ven A Inorg Chem; 2015 May; 54(9):4394-402. PubMed ID: 25905428 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels. Lai C; Chen J; Knight JC; Manthiram A; Navrotsky A Chemphyschem; 2016 Jul; 17(13):1973-8. PubMed ID: 27017448 [TBL] [Abstract][Full Text] [Related]
15. Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides. Lim JM; Kim D; Park MS; Cho M; Cho K Phys Chem Chem Phys; 2016 Apr; 18(16):11411-21. PubMed ID: 27056677 [TBL] [Abstract][Full Text] [Related]
16. Suppression of spinel formation to induce reversible thermal behavior in the layered double hydroxides (LDHs) of Co with Al, Fe, Ga, and In. Radha AV; Thomas GS; Kamath PV; Shivakumara C J Phys Chem B; 2007 Apr; 111(13):3384-90. PubMed ID: 17388504 [TBL] [Abstract][Full Text] [Related]
17. Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn(1.5)O4 spinel. Wagemaker M; Ooms FG; Kelder EM; Schoonman J; Kearley GJ; Mulder FM J Am Chem Soc; 2004 Oct; 126(41):13526-33. PubMed ID: 15479109 [TBL] [Abstract][Full Text] [Related]
18. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinel oxides for lithium-ion batteries: the first-principles calculation study. Okumura T; Yamaguchi Y; Kobayashi H Phys Chem Chem Phys; 2016 Jul; 18(27):17827-30. PubMed ID: 27333155 [TBL] [Abstract][Full Text] [Related]
19. Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study. Shakoor RA; Kim H; Cho W; Lim SY; Song H; Lee JW; Kang JK; Kim YT; Jung Y; Choi JW J Am Chem Soc; 2012 Jul; 134(28):11740-8. PubMed ID: 22720717 [TBL] [Abstract][Full Text] [Related]
20. Understanding of Surface Redox Behaviors of Li2MnO3 in Li-Ion Batteries: First-Principles Prediction and Experimental Validation. Kim D; Lim JM; Lim YG; Park MS; Kim YJ; Cho M; Cho K ChemSusChem; 2015 Oct; 8(19):3255-62. PubMed ID: 26289748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]