BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23529815)

  • 1. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection.
    Yang L; Wang S; Zeng Q; Zhang Z; Peng LM
    Small; 2013 Apr; 9(8):1225-36. PubMed ID: 23529815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm.
    Xu H; Wang S; Zhang Z; Peng LM
    Nano Lett; 2014 Sep; 14(9):5382-9. PubMed ID: 25115287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact-dominated transport in carbon nanotube thin films: toward large-scale fabrication of high performance photovoltaic devices.
    Liu Y; Han J; Wei N; Qiu S; Li H; Li Q; Wang S; Peng LM
    Nanoscale; 2016 Oct; 8(39):17122-17130. PubMed ID: 27714065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits.
    Si J; Liu L; Wang F; Zhang Z; Peng LM
    ACS Nano; 2016 Jul; 10(7):6737-43. PubMed ID: 27322134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices.
    Du J; Pei S; Ma L; Cheng HM
    Adv Mater; 2014 Apr; 26(13):1958-91. PubMed ID: 24591083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A solution processed top emission OLED with transparent carbon nanotube electrodes.
    Chien YM; Lefevre F; Shih I; Izquierdo R
    Nanotechnology; 2010 Apr; 21(13):134020. PubMed ID: 20208120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films.
    Yu D; Liu H; Peng LM; Wang S
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3462-7. PubMed ID: 25651927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermoelectric effect in suspended semiconducting carbon nanotubes.
    Deborde T; Aspitarte L; Sharf T; Kevek JW; Minot ED
    ACS Nano; 2014 Jan; 8(1):216-21. PubMed ID: 24354300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation.
    Hong WK; Lee C; Nepal D; Geckeler KE; Shin K; Lee T
    Nanotechnology; 2006 Nov; 17(22):5675-80. PubMed ID: 21727341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of high-quality CdS:Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications.
    Wu D; Jiang Y; Li S; Li F; Li J; Lan X; Zhang Y; Wu C; Luo L; Jie J
    Nanotechnology; 2011 Oct; 22(40):405201. PubMed ID: 21896984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode.
    Mei X; Cho SJ; Fan B; Ouyang J
    Nanotechnology; 2010 Oct; 21(39):395202. PubMed ID: 20820098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic-enhanced carbon nanotube infrared bolometers.
    Mahjouri-Samani M; Zhou YS; He XN; Xiong W; Hilger P; Lu YF
    Nanotechnology; 2013 Jan; 24(3):035502. PubMed ID: 23263607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel-length-dependent transport and photovoltaic characteristics of carbon-nanotube-based, barrier-free bipolar diode.
    Yang L; Wang S; Zeng Q; Zhang Z; Li Y; Zhou W; Liu J; Peng LM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1154-7. PubMed ID: 22324635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations.
    Long R
    J Phys Chem Lett; 2013 Apr; 4(8):1340-6. PubMed ID: 26282150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties and photonic devices of doped carbon nanotubes.
    Zhao J; Chen X; Xie JR
    Anal Chim Acta; 2006 May; 568(1-2):161-70. PubMed ID: 17761257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-Scale Carbon Nanotubes Diodes Based on Dielectric-Induced Electrostatic Doping.
    Zhang X; Sun P; Wei N; Si J; Li X; Ba J; Wang J; Qin D; Gao N; Gao L; Xu H; Peng LM; Wang Y
    ACS Nano; 2024 Mar; 18(11):7868-7876. PubMed ID: 38440979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.
    Duan X; Huang Y; Cui Y; Wang J; Lieber CM
    Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.