These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23529997)

  • 21. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.
    Wang J; Ma L; Yuan Q; Zhu L; Ding F
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8041-5. PubMed ID: 21761515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes.
    Lim HE; Miyata Y; Fujihara M; Okada S; Liu Z; Arifin ; Sato K; Omachi H; Kitaura R; Irle S; Suenaga K; Shinohara H
    ACS Nano; 2015 May; 9(5):5034-40. PubMed ID: 25868574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning of electronic properties of single-walled carbon nanotubes under homogenous conditions.
    Maeda Y; Sagara A; Hashimoto M; Hirashima Y; Sode K; Hasegawa T; Kanda M; Ishitsuka MO; Tsuchiya T; Akasaka T; Okazaki T; Kataura H; Lu J; Nagase S; Takeuchi S
    Chemphyschem; 2009 Apr; 10(6):926-30. PubMed ID: 19266527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiphonon Raman scattering from individual single-walled carbon nanotubes.
    Wang F; Liu W; Wu Y; Sfeir MY; Huang L; Hone J; O'Brien S; Brus LE; Heinz TF; Shen YR
    Phys Rev Lett; 2007 Jan; 98(4):047402. PubMed ID: 17358810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Talyzin AV; Anoshkin IV; Krasheninnikov AV; Nieminen RM; Nasibulin AG; Jiang H; Kauppinen EI
    Nano Lett; 2011 Oct; 11(10):4352-6. PubMed ID: 21875092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectroscopic characterization of single walled carbon nanotubes: influence of the sample aggregation state.
    López-Lorente AI; Simonet BM; Valcárcel M
    Analyst; 2014 Jan; 139(1):290-8. PubMed ID: 24255912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coronene encapsulation in single-walled carbon nanotubes: stacked columns, peapods, and nanoribbons.
    Anoshkin IV; Talyzin AV; Nasibulin AG; Krasheninnikov AV; Jiang H; Nieminen RM; Kauppinen EI
    Chemphyschem; 2014 Jun; 15(8):1660-5. PubMed ID: 24729536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.
    Yu F; Zhou H; Zhang Z; Wang G; Yang H; Chen M; Tao L; Tang D; He J; Sun L
    Small; 2013 Jul; 9(14):2405-9. PubMed ID: 23650121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene edges: a review of their fabrication and characterization.
    Jia X; Campos-Delgado J; Terrones M; Meunier V; Dresselhaus MS
    Nanoscale; 2011 Jan; 3(1):86-95. PubMed ID: 21103548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties.
    Zhang H; Wu B; Hu W; Liu Y
    Chem Soc Rev; 2011 Mar; 40(3):1324-36. PubMed ID: 21135943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons.
    Ivanov I; Hu Y; Osella S; Beser U; Wang HI; Beljonne D; Narita A; Müllen K; Turchinovich D; Bonn M
    J Am Chem Soc; 2017 Jun; 139(23):7982-7988. PubMed ID: 28525278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.
    Stubrov Y; Nikolenko A; Gubanov V; Strelchuk V
    Nanoscale Res Lett; 2016 Dec; 11(1):2. PubMed ID: 26729220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons.
    Zhou G; Cen C; Wang S; Deng M; Prezhdo OV
    J Phys Chem Lett; 2019 Nov; 10(22):7179-7187. PubMed ID: 31644293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (SWNTs) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6,5)-SWNTs.
    Wang F; Matsuda K; Rahman AF; Peng X; Kimura T; Komatsu N
    J Am Chem Soc; 2010 Aug; 132(31):10876-81. PubMed ID: 20681721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene oxides for homogeneous dispersion of carbon nanotubes.
    Tian L; Meziani MJ; Lu F; Kong CY; Cao L; Thorne TJ; Sun YP
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3217-22. PubMed ID: 20942436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.