These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23530006)

  • 1. Universal rule on chirality-dependent bandgaps in graphene antidot lattices.
    Liu X; Zhang Z; Guo W
    Small; 2013 Apr; 9(8):1405-10. PubMed ID: 23530006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bandgap opening in graphene antidot lattices: the missing half.
    Ouyang F; Peng S; Liu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4023-30. PubMed ID: 21513306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandgap opening/closing of graphene antidot lattices with zigzag-edged hexagonal holes.
    Ouyang F; Peng S; Yang Z; Chen Y; Zou H; Xiong X
    Phys Chem Chem Phys; 2014 Oct; 16(38):20524-20531. PubMed ID: 25141789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandgap scaling in bilayer graphene antidot lattices.
    Petersen R; Pedersen TG
    J Phys Condens Matter; 2015 Jun; 27(22):225502. PubMed ID: 25989621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models.
    Brun SJ; Thomsen MR; Pedersen TG
    J Phys Condens Matter; 2014 Jul; 26(26):265301. PubMed ID: 24911836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clar sextet analysis of triangular, rectangular, and honeycomb graphene antidot lattices.
    Petersen R; Pedersen TG; Jauho AP
    ACS Nano; 2011 Jan; 5(1):523-9. PubMed ID: 21158482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.
    Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V
    ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene based dots and antidots: a comparative study from first principles.
    Cui XY; Li L; Zheng RK; Liu ZW; Stampfl C; Ringer SP
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1251-5. PubMed ID: 23646613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cohesive band structure of carbon nanotubes for applications in quantum transport.
    Arora VK; Bhattacharyya A
    Nanoscale; 2013 Nov; 5(22):10927-35. PubMed ID: 24061093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic Transport in Graphene Antidot Lattices.
    Sandner A; Preis T; Schell C; Giudici P; Watanabe K; Taniguchi T; Weiss D; Eroms J
    Nano Lett; 2015 Dec; 15(12):8402-6. PubMed ID: 26598218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene antidot lattices: designed defects and spin qubits.
    Pedersen TG; Flindt C; Pedersen J; Mortensen NA; Jauho AP; Pedersen K
    Phys Rev Lett; 2008 Apr; 100(13):136804. PubMed ID: 18517984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap opening by patterning graphene.
    Dvorak M; Oswald W; Wu Z
    Sci Rep; 2013; 3():2289. PubMed ID: 23887253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band gap opening by two-dimensional manifestation of peierls instability in graphene.
    Lee SH; Chung HJ; Heo J; Yang H; Shin J; Chung UI; Seo S
    ACS Nano; 2011 Apr; 5(4):2964-9. PubMed ID: 21405129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmability of Co-antidot lattices of optimized geometry.
    Schneider T; Langer M; Alekhina J; Kowalska E; Oelschlägel A; Semisalova A; Neudert A; Lenz K; Potzger K; Kostylev MP; Fassbender J; Adeyeye AO; Lindner J; Bali R
    Sci Rep; 2017 Feb; 7():41157. PubMed ID: 28145463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral γ-graphyne nanotubes with almost equivalent bandgaps.
    Wu S; Yuan Y; Cho D; Lee JY; Kang B
    J Chem Phys; 2019 Feb; 150(5):054706. PubMed ID: 30736670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse relationship between carrier mobility and bandgap in graphene.
    Wang J; Zhao R; Yang M; Liu Z; Liu Z
    J Chem Phys; 2013 Feb; 138(8):084701. PubMed ID: 23464166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures.
    Du A; Chen Y; Zhu Z; Amal R; Lu GQ; Smith SC
    J Am Chem Soc; 2009 Dec; 131(47):17354-9. PubMed ID: 19929022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.