BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 23530043)

  • 1. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit.
    Too PH; Erales J; Simen JD; Marjanovic A; Coffino P
    J Biol Chem; 2013 May; 288(19):13243-57. PubMed ID: 23530043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Kraut DA
    J Biol Chem; 2013 Nov; 288(48):34729-35. PubMed ID: 24151080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule microscopy reveals diverse actions of substrate sequences that impair ClpX AAA+ ATPase function.
    Wang X; Simon SM; Coffino P
    J Biol Chem; 2022 Oct; 298(10):102457. PubMed ID: 36064000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.
    Amor AJ; Schmitz KR; Sello JK; Baker TA; Sauer RT
    ACS Chem Biol; 2016 Jun; 11(6):1552-1560. PubMed ID: 27003103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpXP, an ATP-powered unfolding and protein-degradation machine.
    Baker TA; Sauer RT
    Biochim Biophys Acta; 2012 Jan; 1823(1):15-28. PubMed ID: 21736903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP.
    Li DH; Chung YS; Gloyd M; Joseph E; Ghirlando R; Wright GD; Cheng YQ; Maurizi MR; Guarné A; Ortega J
    Chem Biol; 2010 Sep; 17(9):959-69. PubMed ID: 20851345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
    Shin Y; Davis JH; Brau RR; Martin A; Kenniston JA; Baker TA; Sauer RT; Lang MJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19340-5. PubMed ID: 19892734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Coffino P; Too PH; Erales J
    J Biol Chem; 2014 Feb; 289(6):3826. PubMed ID: 24510918
    [No Abstract]   [Full Text] [Related]  

  • 17. Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review.
    Kang ZH; Liu YT; Gou Y; Deng QR; Hu ZY; Li GR
    Gene; 2021 Mar; 774():145420. PubMed ID: 33434627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reply to Coffino et al.: slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Kraut DA
    J Biol Chem; 2014 Feb; 289(6):3827. PubMed ID: 24665469
    [No Abstract]   [Full Text] [Related]  

  • 20. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.