BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23530261)

  • 21. Induction and phosphorylation of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in the rat retina upon optic nerve injury.
    Schmidt T; Fischer D; Andreadaki A; Bartelt-Kirbach B; Golenhofen N
    Cell Stress Chaperones; 2016 Jan; 21(1):167-178. PubMed ID: 26475352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27).
    Paul C; Simon S; Gibert B; Virot S; Manero F; Arrigo AP
    Exp Cell Res; 2010 May; 316(9):1535-52. PubMed ID: 20233592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of HspB1 (Hsp27) Oligomerization and Phosphorylation Patterns and Its Interaction with Specific Client Polypeptides.
    Arrigo AP
    Methods Mol Biol; 2018; 1709():163-178. PubMed ID: 29177658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation.
    Baughman HER; Clouser AF; Klevit RE; Nath A
    J Biol Chem; 2018 Feb; 293(8):2687-2700. PubMed ID: 29298892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis.
    Huo Q; Wang J; Xie N
    BMC Cancer; 2023 Jun; 23(1):501. PubMed ID: 37268925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.
    Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD
    J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats.
    Bartelt-Kirbach B; Slowik A; Beyer C; Golenhofen N
    Cell Stress Chaperones; 2017 Jul; 22(4):653-663. PubMed ID: 28425051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of human small heat shock protein HSPB1 α-crystallin domain localized mutants associated with hereditary motor neuron diseases.
    Weeks SD; Muranova LK; Heirbaut M; Beelen S; Strelkov SV; Gusev NB
    Sci Rep; 2018 Jan; 8(1):688. PubMed ID: 29330367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and properties of G84R and L99M mutants of human small heat shock protein HspB1 correlating with motor neuropathy.
    Nefedova VV; Sudnitsyna MV; Strelkov SV; Gusev NB
    Arch Biochem Biophys; 2013 Oct; 538(1):16-24. PubMed ID: 23948568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin-proteasome pathways.
    Zhang H; Rajasekaran NS; Orosz A; Xiao X; Rechsteiner M; Benjamin IJ
    J Mol Cell Cardiol; 2010 Dec; 49(6):918-30. PubMed ID: 20863832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies.
    Nefedova VV; Datskevich PN; Sudnitsyna MV; Strelkov SV; Gusev NB
    Biochimie; 2013 Aug; 95(8):1582-92. PubMed ID: 23643870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy.
    Almeida-Souza L; Asselbergh B; d'Ydewalle C; Moonens K; Goethals S; de Winter V; Azmi A; Irobi J; Timmermans JP; Gevaert K; Remaut H; Van Den Bosch L; Timmerman V; Janssens S
    J Neurosci; 2011 Oct; 31(43):15320-8. PubMed ID: 22031878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8.
    Shatov VM; Weeks SD; Strelkov SV; Gusev NB
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is the small heat shock protein HspB1 (Hsp27) a real and predominant target of methylglyoxal modification?
    Sudnitsyna MV; Gusev NB
    Cell Stress Chaperones; 2019 Mar; 24(2):419-426. PubMed ID: 30756294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exosomal HSPB1, interacting with FUS protein, suppresses hypoxia-induced ferroptosis in pancreatic cancer by stabilizing Nrf2 mRNA and repressing P450.
    Zhang L; Yang L; Du K
    J Cell Mol Med; 2024 May; 28(9):e18209. PubMed ID: 38682349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes.
    De Maio A; Cauvi DM; Capone R; Bello I; Egberts WV; Arispe N; Boelens W
    Cell Stress Chaperones; 2019 Sep; 24(5):947-956. PubMed ID: 31338686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation-dependent subcellular localization of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in cultured hippocampal neurons.
    Schmidt T; Bartelt-Kirbach B; Golenhofen N
    Histochem Cell Biol; 2012 Sep; 138(3):407-18. PubMed ID: 22617993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterooligomeric complexes of human small heat shock proteins.
    Mymrikov EV; Seit-Nebi AS; Gusev NB
    Cell Stress Chaperones; 2012 Mar; 17(2):157-69. PubMed ID: 22002549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20).
    Bukach OV; Glukhova AE; Seit-Nebi AS; Gusev NB
    Biochim Biophys Acta; 2009 Mar; 1794(3):486-95. PubMed ID: 19100870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death.
    Acunzo J; Katsogiannou M; Rocchi P
    Int J Biochem Cell Biol; 2012 Oct; 44(10):1622-31. PubMed ID: 22521623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.