BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23530329)

  • 1. Olive fermentation brine: biotechnological potentialities and valorization.
    Fendri I; Chamkha M; Bouaziz M; Labat M; Sayadi S; Abdelkafi S
    Environ Technol; 2013; 34(1-4):181-93. PubMed ID: 23530329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview on olive mill wastes and their valorisation methods.
    Roig A; Cayuela ML; Sánchez-Monedero MA
    Waste Manag; 2006; 26(9):960-9. PubMed ID: 16246541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation and biovalorisation of olive-mill wastes.
    Morillo JA; Antizar-Ladislao B; Monteoliva-Sánchez M; Ramos-Cormenzana A; Russell NJ
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):25-39. PubMed ID: 19082586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions.
    Nisiotou AA; Chorianopoulos N; Nychas GJ; Panagou EZ
    J Appl Microbiol; 2010 Feb; 108(2):396-405. PubMed ID: 20438554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physicochemical-biotechnological approach for an integrated valorization of olive mill wastewater.
    Scoma A; Bertin L; Zanaroli G; Fraraccio S; Fava F
    Bioresour Technol; 2011 Nov; 102(22):10273-9. PubMed ID: 21924896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactivity and analysis of biophenols recovered from olive mill waste.
    Obied HK; Allen MS; Bedgood DR; Prenzler PD; Robards K; Stockmann R
    J Agric Food Chem; 2005 Feb; 53(4):823-37. PubMed ID: 15712986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.
    Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS
    Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cultivar and processing method on the contents of polyphenols in table olives.
    Romero C; Brenes M; Yousfi K; García P; García A; Garrido A
    J Agric Food Chem; 2004 Feb; 52(3):479-84. PubMed ID: 14759136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm formation on abiotic and biotic surfaces during Spanish style green table olive fermentation.
    Domínguez-Manzano J; León-Romero Á; Olmo-Ruiz C; Bautista-Gallego J; Arroyo-López FN; Garrido-Fernández A; Jiménez-Díaz R
    Int J Food Microbiol; 2012 Jul; 157(2):230-8. PubMed ID: 22656327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol.
    Britton J; Davis R; O'Connor KE
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):5957-5974. PubMed ID: 31177312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olive mill wastes: from wastes to resources.
    Enaime G; Dababat S; Wichern M; Lübken M
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):20853-20880. PubMed ID: 38407704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compositional and tissue modifications induced by the natural fermentation process in table olives.
    Servili M; Minnocci A; Veneziani G; Taticchi A; Urbani S; Esposto S; Sebastiani L; Valmorri S; Corsetti A
    J Agric Food Chem; 2008 Aug; 56(15):6389-96. PubMed ID: 18636682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial diversity in support of anaerobic biomass valorization.
    Jobard M; Pessiot J; Nouaille R; Fonty G; Sime-Ngando T
    Crit Rev Biotechnol; 2017 Feb; 37(1):1-10. PubMed ID: 26516020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation.
    Oliveira F; Moreira C; Salgado JM; Abrunhosa L; Venâncio A; Belo I
    J Sci Food Agric; 2016 Aug; 96(10):3583-9. PubMed ID: 26601619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of natamycin to control fungal growth in natural black olive fermentation.
    Hondrodimou O; Kourkoutas Y; Panagou EZ
    Food Microbiol; 2011 May; 28(3):621-7. PubMed ID: 21356474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions.
    Abdelkafi S; Chamkha M; Casalot L; Sayadi S; Labat M
    FEMS Microbiol Lett; 2005 Nov; 252(1):79-84. PubMed ID: 16165329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradations of model compounds representing some phenolics in olive mill wastewater via electro-Fenton and photoelectro-Fenton treatments.
    Kaplan F; Hesenov A; Gözmen B; Erbatur O
    Environ Technol; 2011; 32(7-8):685-92. PubMed ID: 21879543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olive oil industry: a review of waste stream composition, environmental impacts, and energy valorization paths.
    Dahdouh A; Khay I; Le Brech Y; El Maakoul A; Bakhouya M
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):45473-45497. PubMed ID: 36800088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during storage of fermented green table olives in brine.
    Argyri AA; Lyra E; Panagou EZ; Tassou CC
    Food Microbiol; 2013 Oct; 36(1):1-6. PubMed ID: 23764213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation.
    Gugel I; Marchetti F; Costa S; Gugel I; Baldini E; Vertuani S; Manfredini S
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):379. PubMed ID: 38888798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.