These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 23530349)
1. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system. Hussein TA; Ismail ZZ Environ Technol; 2013; 34(1-4):351-61. PubMed ID: 23530349 [TBL] [Abstract][Full Text] [Related]
2. Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems. Cheng KY; Wong JW Environ Technol; 2006 Aug; 27(8):835-44. PubMed ID: 16972379 [TBL] [Abstract][Full Text] [Related]
3. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil. Shi Z; Chen J; Liu J; Wang N; Sun Z; Wang X Environ Sci Pollut Res Int; 2015 Aug; 22(16):12769-74. PubMed ID: 26002358 [TBL] [Abstract][Full Text] [Related]
4. PAHs soil decontamination in two steps: desorption and electrochemical treatment. Alcántara MT; Gómez J; Pazos M; Sanromán MA J Hazard Mater; 2009 Jul; 166(1):462-8. PubMed ID: 19121891 [TBL] [Abstract][Full Text] [Related]
5. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant--PAHs system. Zhou W; Zhu L Environ Pollut; 2007 May; 147(1):66-73. PubMed ID: 17070632 [TBL] [Abstract][Full Text] [Related]
6. Soil heterogeneity and surfactant desorption influence PAH distribution during electroremediation at a tar oil-contaminated site. Heister K; Lima AT Environ Monit Assess; 2019 Sep; 191(10):625. PubMed ID: 31501945 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation of PAHs sorption/desorption on soil with the influence of Tween80. Chen J; Wang XJ; Hu JD; Xu FL; Tao S J Environ Sci (China); 2006; 18(4):716-20. PubMed ID: 17078550 [TBL] [Abstract][Full Text] [Related]
8. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil--water system. Cheng KY; Wong JW Chemosphere; 2006 Mar; 62(11):1907-16. PubMed ID: 16185745 [TBL] [Abstract][Full Text] [Related]
9. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Cheng KY; Zhao ZY; Wong JW Environ Technol; 2004 Oct; 25(10):1159-65. PubMed ID: 15551830 [TBL] [Abstract][Full Text] [Related]
10. Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant. Zhou W; Zhu L Chemosphere; 2005 Sep; 60(9):1237-45. PubMed ID: 16018894 [TBL] [Abstract][Full Text] [Related]
11. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions. Sales PS; Fernández MA Environ Sci Pollut Res Int; 2016 May; 23(10):10158-64. PubMed ID: 26873826 [TBL] [Abstract][Full Text] [Related]
12. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness. Peng S; Wu W; Chen J Chemosphere; 2011 Feb; 82(8):1173-7. PubMed ID: 21215990 [TBL] [Abstract][Full Text] [Related]
13. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. Zhu L; Feng S Chemosphere; 2003 Nov; 53(5):459-67. PubMed ID: 12948529 [TBL] [Abstract][Full Text] [Related]
14. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Liang X; Guo C; Liao C; Liu S; Wick LY; Peng D; Yi X; Lu G; Yin H; Lin Z; Dang Z Environ Pollut; 2017 Jun; 225():129-140. PubMed ID: 28365510 [TBL] [Abstract][Full Text] [Related]
15. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Lau EV; Gan S; Ng HK; Poh PE Environ Pollut; 2014 Jan; 184():640-9. PubMed ID: 24100092 [TBL] [Abstract][Full Text] [Related]
16. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Zhou W; Zhu L Environ Pollut; 2007 May; 147(2):350-7. PubMed ID: 16890334 [TBL] [Abstract][Full Text] [Related]
17. Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons. Kabir-ud-Din ; Shafi M; Bhat PA; Dar AA J Hazard Mater; 2009 Aug; 167(1-3):575-81. PubMed ID: 19232468 [TBL] [Abstract][Full Text] [Related]
18. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
19. Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation. Alcántara MT; Gómez J; Pazos M; Sanromán MA Chemosphere; 2008 Feb; 70(8):1438-44. PubMed ID: 17936331 [TBL] [Abstract][Full Text] [Related]
20. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes. Ashraf U; Lone MS; Masrat R; Shah RA; Afzal S; Chat OA; Dar AA Chemosphere; 2020 Mar; 242():125160. PubMed ID: 31669988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]