BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23530506)

  • 1. Erythropoietin: a neuroprotective agent in cerebral hypoxia, neurodegeneration, and epilepsy.
    Merelli A; Czornyj L; Lazarowski A
    Curr Pharm Des; 2013; 19(38):6791-801. PubMed ID: 23530506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia.
    Merelli A; Caltana L; Lazarowski A; Brusco A
    Drug Metabol Drug Interact; 2011; 26(2):65-9. PubMed ID: 21756166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases.
    Merelli A; Czornyj L; Lazarowski A
    Int J Neurosci; 2015; 125(11):793-7. PubMed ID: 25405533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of motor spontaneous activity after intranasal delivery of human recombinant erythropoietin in a focal brain hypoxia model induced by CoCl2 in rats.
    Merelli A; Caltana L; Girimonti P; Ramos AJ; Lazarowski A; Brusco A
    Neurotox Res; 2011 Aug; 20(2):182-92. PubMed ID: 21116766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Role of Hypoxia Inducible Factor During Neurodegeneration for New Therapeutics Opportunities.
    Merelli A; Rodríguez JCG; Folch J; Regueiro MR; Camins A; Lazarowski A
    Curr Neuropharmacol; 2018; 16(10):1484-1498. PubMed ID: 29318974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythropoietin and the hypoxic brain.
    Marti HH
    J Exp Biol; 2004 Aug; 207(Pt 18):3233-42. PubMed ID: 15299044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Erythropoietin and neuroprotection].
    Chatagner A; Hüppi PS; Ha-Vinh Leuchter R; Sizonenko S
    Arch Pediatr; 2010 Sep; 17 Suppl 3():S78-84. PubMed ID: 20728813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of erythropoietin in the brain.
    Noguchi CT; Asavaritikrai P; Teng R; Jia Y
    Crit Rev Oncol Hematol; 2007 Nov; 64(2):159-71. PubMed ID: 17482474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacologic stabilization of hypoxia-inducible transcription factors protects developing mouse brain from hypoxia-induced apoptotic cell death.
    Trollmann R; Richter M; Jung S; Walkinshaw G; Brackmann F
    Neuroscience; 2014 Oct; 278():327-42. PubMed ID: 25162122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of HIF in cobalt-induced ischemic tolerance.
    Jones SM; Novak AE; Elliott JP
    Neuroscience; 2013 Nov; 252():420-30. PubMed ID: 23916558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin.
    Castaneda-Arellano R; Beas-Zarate C; Feria-Velasco AI; Bitar-Alatorre EW; Rivera-Cervantes MC
    Front Biosci (Landmark Ed); 2014 Jun; 19(8):1445-55. PubMed ID: 24896364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro.
    Liu R; Suzuki A; Guo Z; Mizuno Y; Urabe T
    J Neurochem; 2006 Feb; 96(4):1101-10. PubMed ID: 16417583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system.
    Sirén AL; Fasshauer T; Bartels C; Ehrenreich H
    Neurotherapeutics; 2009 Jan; 6(1):108-27. PubMed ID: 19110203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia.
    van der Kooij MA; Groenendaal F; Kavelaars A; Heijnen CJ; van Bel F
    Brain Res Rev; 2008 Nov; 59(1):22-33. PubMed ID: 18514916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory cytokine tumor necrosis factor α suppresses neuroprotective endogenous erythropoietin from astrocytes mediated by hypoxia-inducible factor-2α.
    Nagaya Y; Aoyama M; Tamura T; Kakita H; Kato S; Hida H; Saitoh S; Asai K
    Eur J Neurosci; 2014 Dec; 40(11):3620-6. PubMed ID: 25283246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acute ischemic stroke in humans.
    Garcia-Rodriguez JC; Sosa-Teste I
    ScientificWorldJournal; 2009 Sep; 9():970-81. PubMed ID: 19768354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin.
    Prass K; Scharff A; Ruscher K; Löwl D; Muselmann C; Victorov I; Kapinya K; Dirnagl U; Meisel A
    Stroke; 2003 Aug; 34(8):1981-6. PubMed ID: 12829864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential neuroprotective properties of endogenous and exogenous erythropoietin in a mouse model of traumatic brain injury.
    Shein NA; Grigoriadis N; Alexandrovich AG; Simeonidou C; Spandou E; Tsenter J; Yatsiv I; Horowitz M; Shohami E
    J Neurotrauma; 2008 Feb; 25(2):112-23. PubMed ID: 18260794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage.
    Yoo SJ; Cho B; Lee D; Son G; Lee YB; Soo Han H; Kim E; Moon C; Moon C
    Cell Death Dis; 2017 Aug; 8(8):e3003. PubMed ID: 28817120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases.
    Merelli A; Repetto M; Lazarowski A; Auzmendi J
    J Alzheimers Dis; 2021; 82(s1):S109-S126. PubMed ID: 33325385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.