These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23530595)

  • 1. Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak.
    Fox JD; Capadona JR; Marasco PD; Rowan SJ
    J Am Chem Soc; 2013 Apr; 135(13):5167-74. PubMed ID: 23530595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites.
    Zhang Y; Pon N; Awaji A; Rowan SJ
    Biomacromolecules; 2021 Jan; 22(1):201-212. PubMed ID: 32969223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters.
    Annamalai PK; Dagnon KL; Monemian S; Foster EJ; Rowan SJ; Weder C
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):967-76. PubMed ID: 24354282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.
    Tan Y; Hoon S; Guerette PA; Wei W; Ghadban A; Hao C; Miserez A; Waite JH
    Nat Chem Biol; 2015 Jul; 11(7):488-95. PubMed ID: 26053298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance.
    Wang B; Torres-Rendon JG; Yu J; Zhang Y; Walther A
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4595-607. PubMed ID: 25646801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry.
    Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O
    Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.
    Ansari F; Salajková M; Zhou Q; Berglund LA
    Biomacromolecules; 2015 Dec; 16(12):3916-24. PubMed ID: 26505077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.
    Yang J; Han CR; Duan JF; Xu F; Sun RC
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose.
    Reddy JP; Rhim JW
    Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane.
    Cao X; Dong H; Li CM
    Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites.
    Santamaria-Echart A; Ugarte L; García-Astrain C; Arbelaiz A; Corcuera MA; Eceiza A
    Carbohydr Polym; 2016 Oct; 151():1203-1209. PubMed ID: 27474671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles.
    Abdollahi M; Alboofetileh M; Behrooz R; Rezaei M; Miraki R
    Int J Biol Macromol; 2013 Mar; 54():166-73. PubMed ID: 23262388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanocrystal/amino-aldehyde biocomposite films.
    Nagy S; Csiszár E; Kun D; Koczka B
    Carbohydr Polym; 2018 Aug; 194():51-60. PubMed ID: 29801858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction.
    Cudjoe E; Younesi M; Cudjoe E; Akkus O; Rowan SJ
    Biomacromolecules; 2017 Apr; 18(4):1259-1267. PubMed ID: 28328202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties.
    Babaei-Ghazvini A; Cudmore B; Dunlop MJ; Acharya B; Bissessur R; Ahmed M; Whelan WM
    Carbohydr Polym; 2020 Nov; 247():116688. PubMed ID: 32829816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials: Recipe for squid beak.
    Linder MB
    Nat Chem Biol; 2015 Jul; 11(7):455-6. PubMed ID: 26053299
    [No Abstract]   [Full Text] [Related]  

  • 19. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links.
    Li Y; Thula TT; Jee S; Perkins SL; Aparicio C; Douglas EP; Gower LB
    Biomacromolecules; 2012 Jan; 13(1):49-59. PubMed ID: 22133238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry.
    Parambath Kanoth B; Claudino M; Johansson M; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16303-10. PubMed ID: 26151647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.