BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23530719)

  • 1. Analyzing surfactant structures on length and chirality resolved (6,5) single-wall carbon nanotubes by analytical ultracentrifugation.
    Fagan JA; Zheng M; Rastogi V; Simpson JR; Khripin CY; Silvera Batista CA; Hight Walker AR
    ACS Nano; 2013 Apr; 7(4):3373-87. PubMed ID: 23530719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration.
    Inori R; Okada T; Arie T; Akita S
    Nanotechnology; 2012 Jun; 23(23):235708. PubMed ID: 22610048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR.
    Shastry TA; Morris-Cohen AJ; Weiss EA; Hersam MC
    J Am Chem Soc; 2013 May; 135(18):6750-3. PubMed ID: 23369051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge.
    Arnold MS; Suntivich J; Stupp SI; Hersam MC
    ACS Nano; 2008 Nov; 2(11):2291-300. PubMed ID: 19206395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diameter-dependent solubility of single-walled carbon nanotubes.
    Duque JG; Parra-Vasquez AN; Behabtu N; Green MJ; Higginbotham AL; Price BK; Leonard AD; Schmidt HK; Lounis B; Tour JM; Doorn SK; Cognet L; Pasquali M
    ACS Nano; 2010 Jun; 4(6):3063-72. PubMed ID: 20521799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of empty and water-filled single-wall carbon nanotubes.
    Fagan JA; Huh JY; Simpson JR; Blackburn JL; Holt JM; Larsen BA; Walker AR
    ACS Nano; 2011 May; 5(5):3943-53. PubMed ID: 21480636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the surfactant density on SWCNTs by analytical ultracentrifugation.
    Backes C; Karabudak E; Schmidt CD; Hauke F; Hirsch A; Wohlleben W
    Chemistry; 2010 Nov; 16(44):13176-84. PubMed ID: 20878795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress towards monodisperse single-walled carbon nanotubes.
    Hersam MC
    Nat Nanotechnol; 2008 Jul; 3(7):387-94. PubMed ID: 18654561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube.
    Liu S; Wei L; Hao L; Fang N; Chang MW; Xu R; Yang Y; Chen Y
    ACS Nano; 2009 Dec; 3(12):3891-902. PubMed ID: 19894705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy.
    Casey JP; Bachilo SM; Moran CH; Weisman RB
    ACS Nano; 2008 Aug; 2(8):1738-46. PubMed ID: 19206379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length distribution of single-walled carbon nanotubes in aqueous suspension measured by electrospray differential mobility analysis.
    Pease LF; Tsai DH; Fagan JA; Bauer BJ; Zangmeister RA; Tarlov MJ; Zachariah MR
    Small; 2009 Dec; 5(24):2894-901. PubMed ID: 19810013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions.
    Siitonen AJ; Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2010 May; 10(5):1595-9. PubMed ID: 20377240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evaluation of individual dispersion of single-walled carbon nanotubes using absorption and fluorescence spectroscopic techniques.
    Yoon D; Kang SJ; Choi JB; Kim YJ; Baik S
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3727-30. PubMed ID: 18047046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides.
    Xie H; Becraft EJ; Baughman RH; Dalton AB; Dieckmann GR
    J Pept Sci; 2008 Feb; 14(2):139-51. PubMed ID: 18098328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions.
    Blackburn JL; Engtrakul C; McDonald TJ; Dillon AC; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25551-8. PubMed ID: 17166007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.