These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23530942)

  • 21. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasma-assisted combustion technology for NOx reduction in industrial burners.
    Lee DH; Kim KT; Kang HS; Song YH; Park JE
    Environ Sci Technol; 2013 Oct; 47(19):10964-70. PubMed ID: 24032692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.
    McNevin TF
    J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of post-combustion ultra-low NO
    Xiao Y; Song G; Yang Z; Yang X; Wang C; Ji Z; Lyu Q; Zhang X
    Waste Manag; 2022 Jan; 137():72-80. PubMed ID: 34749179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.
    Park M; Shim SH; Jeong SH; Oh KJ; Lee SS
    J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.
    Xue Y; Tian H; Yan J; Zhou Z; Wang J; Nie L; Pan T; Zhou J; Hua S; Wang Y; Wu X
    Environ Pollut; 2016 Jun; 213():717-726. PubMed ID: 27023281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerodynamic Characteristics of a Stoker Furnace with Staged Combustion: Comparison of Cold Modeling Experiments and Numerical Simulations.
    Guo X; Bai H; Zhang Z; Yu J; Bi D; Zhu Z
    ACS Omega; 2020 Jul; 5(27):16332-16341. PubMed ID: 32685796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood.
    Sippula O; Huttunen K; Hokkinen J; Kärki S; Suhonen H; Kajolinna T; Kortelainen M; Karhunen T; Jalava P; Uski O; Yli-Pirilä P; Hirvonen MR; Jokiniemi J
    Environ Pollut; 2019 May; 248():888-897. PubMed ID: 30856504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.
    Roy B; Chen L; Bhattacharya S
    Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion.
    Andersen ME; Modak N; Winterrowd CK; Lee CW; Roberts WL; Wendt JOL; Linak WP
    Proc Combust Inst; 2017; 36(6):4029-4037. PubMed ID: 30344457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Distribution of fluoride in the combustion products of coal].
    Liu J; Qi Q; Zhou J; Cao X; Cen K
    Huan Jing Ke Xue; 2003 Jul; 24(4):127-30. PubMed ID: 14551972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.
    Tian H; Liu K; Hao J; Wang Y; Gao J; Qiu P; Zhu C
    Environ Sci Technol; 2013 Oct; 47(19):11350-7. PubMed ID: 24010996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of NO
    Li Y; Lin Y; Zhao J; Liu B; Wang T; Wang P; Mao H
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9717-9729. PubMed ID: 30734254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particulate and gaseous emissions during fluidized bed combustion of semi-dried sewage sludge: effect of bed ash accumulation on NOx formation.
    Cammarota A; Chirone R; Salatino P; Solimene R; Urciuolo M
    Waste Manag; 2013 Jun; 33(6):1397-402. PubMed ID: 23490356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient combustion with low excess air in a modern energy-from-waste (EfW) plant.
    Strobel R; Waldner MH; Gablinger H
    Waste Manag; 2018 Mar; 73():301-306. PubMed ID: 28693845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS; Basha S; Joshi HV; Jha B
    J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.
    Clack HL
    Environ Sci Technol; 2012 Jul; 46(13):7327-33. PubMed ID: 22663136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.
    Zhuang Y; Pavlish JH
    Environ Sci Technol; 2012 Apr; 46(8):4657-65. PubMed ID: 22439940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles.
    Roberge B
    Appl Occup Environ Hyg; 2000 May; 15(5):421-8. PubMed ID: 10808264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel.
    Fernandez A; Wendt JO; Wolski N; Hein KR; Wang S; Witten ML
    Chemosphere; 2003 Jun; 51(10):1129-37. PubMed ID: 12718979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.