These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23530942)

  • 41. Environmental hazard of oil shale combustion fly ash.
    Blinova I; Bityukova L; Kasemets K; Ivask A; Käkinen A; Kurvet I; Bondarenko O; Kanarbik L; Sihtmäe M; Aruoja V; Schvede H; Kahru A
    J Hazard Mater; 2012 Aug; 229-230():192-200. PubMed ID: 22717068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.
    Cao Y; Zhou H; Jiang W; Chen CW; Pan WP
    Environ Sci Technol; 2010 May; 44(9):3429-34. PubMed ID: 20380437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Mar; 129():133-9. PubMed ID: 24462922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combustion Modifications of Batch Annealing Furnaces and Ammonia Combustion Ovens for NOX Abatement in Steel Plants.
    Teng H
    J Air Waste Manag Assoc; 1996 Dec; 46(12):1171-1178. PubMed ID: 28081400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influences of In-Furnace Kaolin Addition on the Formation and Emission Characteristics of PM
    Xu Y; Liu X; Wang H; Zeng X; Zhang Y; Han J; Xu M; Pan S
    Environ Sci Technol; 2018 Aug; 52(15):8718-8724. PubMed ID: 29965744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.
    Oikawa PY; Ge C; Wang J; Eberwein JR; Liang LL; Allsman LA; Grantz DA; Jenerette GD
    Nat Commun; 2015 Nov; 6():8753. PubMed ID: 26556236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Dec; 138():427-33. PubMed ID: 24661430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.
    Zajemska M; Musiał D; Poskart A
    Environ Technol; 2014; 35(5-8):602-10. PubMed ID: 24645439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of calcium oxide content in marine fuel oil on emission characteristics of marine furnaces under varying humidity and temperature of the inlet air.
    Lin CY; Chen WC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):281-97. PubMed ID: 15030157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methane Gas Cofiring Effects on Combustion and NO
    Kim KM; Kim GB; Lee BH; Jeon CH; Keum JH
    ACS Omega; 2021 Nov; 6(46):31132-31146. PubMed ID: 34841155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear modeling of industrial boiler NOx emissions.
    Ronquillo-Lomeli G; Rodríguez-Olivares NA; Barriga-Rodríguez L; Ramírez-Martínez A; Soto-Cajiga JA; Nava-Balanzar L
    J Air Waste Manag Assoc; 2022 Jun; 72(6):556-569. PubMed ID: 34519626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NORM emissions from heavy oil and natural gas fired power plants in Syria.
    Al-Masri MS; Haddad Kh
    J Environ Radioact; 2012 Feb; 104():71-4. PubMed ID: 22033192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.
    England GC; McGrath TP; Gilmer L; Seebold JG; Lev-On M; Hunt T
    Chemosphere; 2001; 42(5-7):745-64. PubMed ID: 11219701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.
    Löschau M
    Waste Manag Res; 2018 Apr; 36(4):342-350. PubMed ID: 29451103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fly-ash products from biomass co-combustion for VOC control.
    Kwong CW; Chao CY
    Bioresour Technol; 2010 Feb; 101(3):1075-81. PubMed ID: 19773158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads.
    Zhang X; Li K; Zhang C; Wang A
    Waste Manag; 2020 Mar; 105():84-91. PubMed ID: 32035330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy.
    Kurihara M; Ikeda K; Izawa Y; Deguchi Y; Tarui H
    Appl Opt; 2003 Oct; 42(30):6159-65. PubMed ID: 14594079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of kaolin on the combustion of demolition wood under well-controlled conditions.
    Khalil RA; Todorovic D; Skreiberg O; Becidan M; Backman R; Goile F; Skreiberg A; Sørum L
    Waste Manag Res; 2012 Jul; 30(7):672-80. PubMed ID: 22081382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler.
    Li Z; Zhao W; Li R; Wang Z; Li Y; Zhao G
    Bioresour Technol; 2009 Apr; 100(7):2278-83. PubMed ID: 19091555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.