BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 23531003)

  • 1. Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature.
    Momose-Sato Y; Sato K
    Ann N Y Acad Sci; 2013 Mar; 1279():60-70. PubMed ID: 23531003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1230-41. PubMed ID: 22339904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological mechanisms underlying switching from the large-scale depolarization wave to segregated activity in the mouse central nervous system.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1242-52. PubMed ID: 22512255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS.
    Momose-Sato Y; Sato K; Kinoshita M
    Eur J Neurosci; 2007 Feb; 25(4):929-44. PubMed ID: 17331191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical analysis of depolarization waves in the embryonic brain: a dual network of gap junctions and chemical synapses.
    Momose-Sato Y; Miyakawa N; Mochida H; Sasaki S; Sato K
    J Neurophysiol; 2003 Jan; 89(1):600-14. PubMed ID: 12522205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator.
    Momose-Sato Y; Sato K
    Neuroscience; 2014 Apr; 266():186-96. PubMed ID: 24568731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical imaging of spreading depolarization waves triggered by spinal nerve stimulation in the chick embryo: possible mechanisms for large-scale coactivation of the central nervous system.
    Mochida H; Sato K; Arai Y; Sasaki S; Kamino K; Momose-Sato Y
    Eur J Neurosci; 2001 Sep; 14(5):809-20. PubMed ID: 11576185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depolarization waves in the embryonic CNS triggered by multiple sensory inputs and spontaneous activity: optical imaging with a voltage-sensitive dye.
    Momose-Sato Y; Mochida H; Sasaki S; Sato K
    Neuroscience; 2003; 116(2):407-23. PubMed ID: 12559096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical imaging analysis of neural circuit formation in the embryonic brain.
    Sato K; Momose-Sato Y
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):706-13. PubMed ID: 18067593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spreading depolarization waves triggered by vagal stimulation in the embryonic chick brain: optical evidence for intercellular communication in the developing central nervous system.
    Momose-Sato Y; Sato K; Mochida H; Yazawa I; Sasaki S; Kamino K
    Neuroscience; 2001; 102(2):245-62. PubMed ID: 11166111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the spatiotemporal organization of neural activity in the developing spinal cord.
    O'Donovan MJ; Bonnot A; Mentis GZ; Arai Y; Chub N; Shneider NA; Wenner P
    Dev Neurobiol; 2008 May; 68(6):788-803. PubMed ID: 18383543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway.
    Sato K; Kinoshita M; Momose-Sato Y
    Neuroscience; 2007 Feb; 144(4):1334-46. PubMed ID: 17184922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of supraspinal input in embryonic motility: a re-examination in the chick.
    Oppenheim RW
    J Comp Neurol; 1975 Mar; 160(1):37-50. PubMed ID: 1112921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo.
    Sholomenko GN; Delaney KR
    Exp Neurol; 1998 Dec; 154(2):430-51. PubMed ID: 9878180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium imaging of network function in the developing spinal cord.
    O'Donovan MJ; Bonnot A; Wenner P; Mentis GZ
    Cell Calcium; 2005 May; 37(5):443-50. PubMed ID: 15820392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The kinetic properties of inhibitory postsynaptic currents in a cell culture of chick embryo spinal cord].
    Mel'nik IV
    Neirofiziologiia; 1991; 23(4):427-35. PubMed ID: 1656283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.