These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 23531003)

  • 21. Optical recording of vagal pathway formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Auton Neurosci; 2006 Jun; 126-127():39-49. PubMed ID: 16616702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacology of the central control of micturition.
    Stephenson JD
    Funct Neurol; 1991; 6(3):211-7. PubMed ID: 1683851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window.
    Yvert B; Branchereau P; Meyrand P
    J Neurophysiol; 2004 May; 91(5):2101-9. PubMed ID: 14724265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo.
    Borday C; Coutinho A; Germon I; Champagnat J; Fortin G
    J Neurobiol; 2006 Oct; 66(12):1285-301. PubMed ID: 16967510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The spontaneous synaptic activity in a cell culture of chick embryo spinal cord].
    Mel'nik IV
    Neirofiziologiia; 1991; 23(3):280-90. PubMed ID: 1881485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific vulnerability of mouse spinal cord motoneurons to membrane depolarization.
    Gou-Fabregas M; Garcera A; Mincheva S; Perez-Garcia MJ; Comella JX; Soler RM
    J Neurochem; 2009 Sep; 110(6):1842-54. PubMed ID: 19627436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging.
    Tsytsarev V; Pope D; Pumbo E; Yablonskii A; Hofmann M
    Neuroimage; 2010 Oct; 53(1):233-8. PubMed ID: 20558304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projections from the brain to the spinal cord in the mouse.
    Liang H; Paxinos G; Watson C
    Brain Struct Funct; 2011 Jan; 215(3-4):159-86. PubMed ID: 20936329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional connectivity in the rat brain: a complex network approach.
    Bifone A; Gozzi A; Schwarz AJ
    Magn Reson Imaging; 2010 Oct; 28(8):1200-9. PubMed ID: 20813478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal cord-muscle relations: their role in neuro-muscular development in birds.
    Gardahaut MF; Fontaine-Perus J; Le Douarin GH
    Int J Dev Biol; 1990 Mar; 34(1):181-9. PubMed ID: 2203457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initiation and control of swimming in amphibian embryos.
    Roberts A; Soffe SR; Clarke JD; Dale N
    Symp Soc Exp Biol; 1983; 37():261-84. PubMed ID: 6679115
    [No Abstract]   [Full Text] [Related]  

  • 34. Development and functional organization of spinal locomotor circuits.
    Kiehn O
    Curr Opin Neurobiol; 2011 Feb; 21(1):100-9. PubMed ID: 20889331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation.
    Smith JL; Schoenwolf GC
    J Exp Zool; 1989 Apr; 250(1):49-62. PubMed ID: 2723610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye.
    Momose-Sato Y; Nakamori T; Sato K
    Neuroscience; 2011 Sep; 192():781-92. PubMed ID: 21718760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal and supraspinal monoamine-sensitive components of embryonic motility.
    Sedlácek J
    Physiol Bohemoslov; 1979; 28(2):185-8. PubMed ID: 37535
    [No Abstract]   [Full Text] [Related]  

  • 38. [The action of L-DOPA on the spontaneous activity generated by the isolated spinal cord of 16- to 20-day-old chick embryos].
    Chub NL
    Neirofiziologiia; 1991; 23(3):338-43. PubMed ID: 1679202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-scale synchronized activity in the embryonic brainstem and spinal cord.
    Momose-Sato Y; Sato K
    Front Cell Neurosci; 2013; 7():36. PubMed ID: 23596392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical monitoring of early appearance of spontaneous membrane potential changes in the embryonic chick medulla oblongata using a voltage-sensitive dye.
    Komuro H; Momose-Sato Y; Sakai T; Hirota A; Kamino K
    Neuroscience; 1993 Jan; 52(1):55-62. PubMed ID: 8433809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.