These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23531009)

  • 41. The human sensorimotor cortex fosters muscle synergies through cortico-synergy coherence.
    Zandvoort CS; van Dieën JH; Dominici N; Daffertshofer A
    Neuroimage; 2019 Oct; 199():30-37. PubMed ID: 31121297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modular organization of motor behavior.
    Bizzi E; Saltiel P; Tresch M
    Z Naturforsch C J Biosci; 1998; 53(7-8):510-7. PubMed ID: 9755510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats.
    Khalki L; Sadlaoud K; Lerond J; Coq JO; Brezun JM; Vinay L; Coulon P; Bras H
    Exp Neurol; 2018 Jan; 299(Pt A):1-14. PubMed ID: 28917641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alternation of agonists and antagonists during turtle hindlimb motor rhythms.
    Stein PS
    Ann N Y Acad Sci; 2010 Jun; 1198():105-18. PubMed ID: 20536925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reinnervation of denervated lumbar ventral roots and their target muscle by thoracic spinal motoneurons via an implanted nerve autograft in adult rats after spinal cord injury.
    Liu S; Kadi K; Boisset N; Lacroix C; Said G; Tadie M
    J Neurosci Res; 1999 Jun; 56(5):506-17. PubMed ID: 10369217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model.
    Fairchild MD; Kim SJ; Iarkov A; Abbas JJ; Jung R
    Exp Neurol; 2010 Jun; 223(2):623-33. PubMed ID: 20206164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat.
    Falgairolle M; Cazalets JR
    J Physiol; 2007 Apr; 580(Pt 1):87-102. PubMed ID: 17185345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sonic motor pathways in piranhas with a reassessment of phylogenetic patterns of sonic mechanisms among teleosts.
    Ladich F; Bass AH
    Brain Behav Evol; 2005; 66(3):167-76. PubMed ID: 16088101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors.
    Stein PSG
    J Neurophysiol; 2018 Feb; 119(2):422-440. PubMed ID: 29070633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphofunctional study of injured spinal cord of rats after activation of serotonergic receptors and motor load.
    Gilerovich EG; Moshonkina TR; Pavlova NV; Otellin VA; Gerasimenko YP
    Dokl Biol Sci; 2009; 428():412-5. PubMed ID: 19994777
    [No Abstract]   [Full Text] [Related]  

  • 54. Locomotor recovery in the chronic spinal rat: effects of long-term treatment with a 5-HT2 agonist.
    Antri M; Orsal D; Barthe JY
    Eur J Neurosci; 2002 Aug; 16(3):467-76. PubMed ID: 12193190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human Spinal Motor Control.
    Nielsen JB
    Annu Rev Neurosci; 2016 Jul; 39():81-101. PubMed ID: 27023730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motor unit number estimation of the tibialis anterior muscle in spinal cord injury.
    Xiong GX; Zhang JW; Hong Y; Guan Y; Guan H
    Spinal Cord; 2008 Oct; 46(10):696-702. PubMed ID: 18332883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural basis for hand muscle synergies in the primate spinal cord.
    Takei T; Confais J; Tomatsu S; Oya T; Seki K
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8643-8648. PubMed ID: 28739958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs.
    Morin D; Viala D
    J Neurosci; 2002 Jun; 22(11):4756-65. PubMed ID: 12040083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Output units of motor behavior: an experimental and modeling study.
    Loeb EP; Giszter SF; Saltiel P; Bizzi E; Mussa-Ivaldi FA
    J Cogn Neurosci; 2000 Jan; 12(1):78-97. PubMed ID: 10769307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.