These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 23531452)
1. Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere. Bujňáková Z; Baláž P; Zorkovská A; Sayagués MJ; Kováč J; Timko M J Hazard Mater; 2013 Nov; 262():1204-12. PubMed ID: 23531452 [TBL] [Abstract][Full Text] [Related]
2. Arsenic sorption onto natural hematite, magnetite, and goethite. Giménez J; Martínez M; de Pablo J; Rovira M; Duro L J Hazard Mater; 2007 Mar; 141(3):575-80. PubMed ID: 16978766 [TBL] [Abstract][Full Text] [Related]
3. EXAFS and HRTEM evidence for As(III)-containing surface precipitates on nanocrystalline magnetite: implications for As sequestration. Morin G; Wang Y; Ona-Nguema G; Juillot F; Calas G; Menguy N; Aubry E; Bargar JR; Brown GE Langmuir; 2009 Aug; 25(16):9119-28. PubMed ID: 19601563 [TBL] [Abstract][Full Text] [Related]
4. Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. Jiang W; Wu Y; He B; Zeng X; Lai K; Gu Z J Colloid Interface Sci; 2010 Jul; 347(1):1-7. PubMed ID: 20413125 [TBL] [Abstract][Full Text] [Related]
5. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Chowdhury SR; Yanful EK J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797 [TBL] [Abstract][Full Text] [Related]
6. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Wang Y; Morin G; Ona-Nguema G; Juillot F; Calas G; Brown GE Environ Sci Technol; 2011 Sep; 45(17):7258-66. PubMed ID: 21809819 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Shipley HJ; Yean S; Kan AT; Tomson MB Environ Toxicol Chem; 2009 Mar; 28(3):509-15. PubMed ID: 18939890 [TBL] [Abstract][Full Text] [Related]
8. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178 [TBL] [Abstract][Full Text] [Related]
9. U(VI) sorption and reduction kinetics on the magnetite (111) surface. Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA Environ Sci Technol; 2012 Apr; 46(7):3821-30. PubMed ID: 22394451 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and Characterization of Magnetic Nanomaterials with Adsorptive Properties of Arsenic Ions. Wojciechowska A; Lendzion-Bieluń Z Molecules; 2020 Sep; 25(18):. PubMed ID: 32916914 [TBL] [Abstract][Full Text] [Related]
11. Sorption of silicates on goethite, hematite, and magnetite: experiments and modelling. Jordan N; Marmier N; Lomenech C; Giffaut E; Ehrhardt JJ J Colloid Interface Sci; 2007 Aug; 312(2):224-9. PubMed ID: 17467724 [TBL] [Abstract][Full Text] [Related]
12. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Chen R; Zhi C; Yang H; Bando Y; Zhang Z; Sugiur N; Golberg D J Colloid Interface Sci; 2011 Jul; 359(1):261-8. PubMed ID: 21507418 [TBL] [Abstract][Full Text] [Related]
13. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention. Freitas ET; Stroppa DG; Montoro LA; de Mello JW; Gasparon M; Ciminelli VS Chemosphere; 2016 Sep; 158():91-9. PubMed ID: 27258899 [TBL] [Abstract][Full Text] [Related]
14. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796 [TBL] [Abstract][Full Text] [Related]
15. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Tang W; Su Y; Li Q; Gao S; Shang JK Water Res; 2013 Jul; 47(11):3624-34. PubMed ID: 23726698 [TBL] [Abstract][Full Text] [Related]
16. Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs. Shi R; Wang Y; Hu Y; Chen L; Wan QH J Chromatogr A; 2009 Sep; 1216(36):6382-6. PubMed ID: 19632684 [TBL] [Abstract][Full Text] [Related]
17. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. Chandra V; Park J; Chun Y; Lee JW; Hwang IC; Kim KS ACS Nano; 2010 Jul; 4(7):3979-86. PubMed ID: 20552997 [TBL] [Abstract][Full Text] [Related]
18. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Feng L; Cao M; Ma X; Zhu Y; Hu C J Hazard Mater; 2012 May; 217-218():439-46. PubMed ID: 22494901 [TBL] [Abstract][Full Text] [Related]
19. Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Auffan M; Rose J; Proux O; Borschneck D; Masion A; Chaurand P; Hazemann JL; Chaneac C; Jolivet JP; Wiesner MR; Geen AV; Bottero JY Langmuir; 2008 Apr; 24(7):3215-22. PubMed ID: 18266393 [TBL] [Abstract][Full Text] [Related]
20. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Sun J; Chillrud SN; Mailloux BJ; Stute M; Singh R; Dong H; Lepre CJ; Bostick BC Chemosphere; 2016 Feb; 144():1106-15. PubMed ID: 26454120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]