BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 235319)

  • 21. Interaction of I-anilino-8-naphthalene sulphonate with human serum low-density lipoprotein.
    Ghosh S; Basu MK; Schweppe JS
    Biochim Biophys Acta; 1974 Mar; 337(3):395-403. PubMed ID: 4364991
    [No Abstract]   [Full Text] [Related]  

  • 22. Principal component analysis of the pH-dependent conformational transitions of bovine beta-lactoglobulin monitored by heteronuclear NMR.
    Sakurai K; Goto Y
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15346-51. PubMed ID: 17878316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some aspects of beta-lactoglobulin structural properties in solution studied by fluorescence quenching.
    Busti P; Gatti CA; Delorenzi NJ
    Int J Biol Macromol; 1998 Aug; 23(2):143-8. PubMed ID: 9730168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in structure and hydrophobic surface properties of beta-lactoglobulin determined by partition in aqueous two-phase polymeric systems.
    Axelsson CG
    Biochim Biophys Acta; 1978 Mar; 533(1):34-42. PubMed ID: 25088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan dynamics in the exploration of micro-conformational changes of refolded β-lactoglobulin after thermal exposure: a steady state and time-resolved fluorescence approach.
    Halder UC; Chakraborty J; Das N; Bose S
    J Photochem Photobiol B; 2012 Apr; 109():50-7. PubMed ID: 22342029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>.
    Ma B; Zhang F; Liu Y; Xie J; Wang X
    Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of phosphofructokinase with the fluorescent probe-2-(N-methylanilino)naphthalene-6-sulphonate.
    Hofer HW; Radda GK
    Eur J Biochem; 1974 Mar; 42(2):341-7. PubMed ID: 4275249
    [No Abstract]   [Full Text] [Related]  

  • 29. Comparison of the conformational stability of the non-native alpha-helical intermediate of thiol-modified beta-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH.
    Chamani J
    J Colloid Interface Sci; 2006 Jul; 299(2):636-46. PubMed ID: 16554059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure-induced denaturation of monomer beta-lactoglobulin is partially irreversible: comparison of monomer form (highly acidic pH) with dimer form (neutral pH).
    Ikeuchi Y; Nakagawa K; Endo T; Suzuki A; Hayashi T; Ito T
    J Agric Food Chem; 2001 Aug; 49(8):4052-9. PubMed ID: 11513709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine beta-lactoglobulin.
    Collini M; D'Alfonso L; Molinari H; Ragona L; Catalano M; Baldini G
    Protein Sci; 2003 Aug; 12(8):1596-603. PubMed ID: 12876309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trifluorosilane induced structural transitions in beta-lactoglobulin in sol and gel.
    Peng Y; Turner NW; Britt DW
    Colloids Surf B Biointerfaces; 2014 Jul; 119():6-13. PubMed ID: 24835051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the fatty acid binding site of beta-lactoglobulins.
    Frapin D; Dufour E; Haertle T
    J Protein Chem; 1993 Aug; 12(4):443-9. PubMed ID: 8251064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-pressure effects on beta-lactoglobulin interactions with ligands studied by fluorescence.
    Dufour E; Hoa GH; Haertlé T
    Biochim Biophys Acta; 1994 Jun; 1206(2):166-72. PubMed ID: 8003521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 Jul; 21(4):1683-7. PubMed ID: 21350857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degree of dissociation of apohemoglobin studied by nano-second fluorescence-polarization technique.
    Kinosita K; Mitaku S; Ikegami A
    Biochim Biophys Acta; 1975 May; 393(1):10-4. PubMed ID: 1138915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer.
    Uhrínová S; Smith MH; Jameson GB; Uhrín D; Sawyer L; Barlow PN
    Biochemistry; 2000 Apr; 39(13):3565-74. PubMed ID: 10736155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of ellipticine to beta-lactoglobulin. A physico-chemical study of the specific interaction of an antitumor drug with a transport protein.
    Dodin G; Andrieux M; al Kabbani H
    Eur J Biochem; 1990 Nov; 193(3):697-700. PubMed ID: 2249687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of bovine and porcine beta-lactoglobulin: a mass spectrometric analysis.
    Invernizzi G; Samalikova M; Brocca S; Lotti M; Molinari H; Grandori R
    J Mass Spectrom; 2006 Jun; 41(6):717-27. PubMed ID: 16770828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta-lactoglobulin binds retinol and protoporphyrin IX at two different binding sites.
    Dufour E; Marden MC; Haertlé T
    FEBS Lett; 1990 Dec; 277(1-2):223-6. PubMed ID: 2269359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.