These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 23532041)
1. Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas. Chaudhuri S; Ale S Sci Total Environ; 2013 May; 452-453():333-48. PubMed ID: 23532041 [TBL] [Abstract][Full Text] [Related]
2. Temporal evolution of depth-stratified groundwater salinity in municipal wells in the major aquifers in Texas, USA. Chaudhuri S; Ale S Sci Total Environ; 2014 Feb; 472():370-80. PubMed ID: 24295753 [TBL] [Abstract][Full Text] [Related]
3. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China. Huang H; Chen Z; Wang T; Zhang L; Zhou G; Sun B; Wang Y Environ Sci Pollut Res Int; 2019 Oct; 26(29):30055-30068. PubMed ID: 31414390 [TBL] [Abstract][Full Text] [Related]
4. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas. Wong CI; Kromann JS; Hunt BB; Smith BA; Banner JL Ground Water; 2014; 52(4):624-39. PubMed ID: 24033308 [TBL] [Abstract][Full Text] [Related]
5. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
6. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer. Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724 [TBL] [Abstract][Full Text] [Related]
7. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China). Zhang X; Miao J; Hu BX; Liu H; Zhang H; Ma Z Environ Sci Pollut Res Int; 2017 Sep; 24(26):21073-21090. PubMed ID: 28730358 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal variability of groundwater nitrate concentration in Texas: 1960 to 2010. Chaudhuri S; Ale S; Delaune P; Rajan N J Environ Qual; 2012; 41(6):1806-17. PubMed ID: 23128738 [TBL] [Abstract][Full Text] [Related]
9. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management. Yuval Y; Rimon Y; Graber ER; Furman A Environ Sci Process Impacts; 2014 Aug; 16(8):2007-17. PubMed ID: 25053141 [TBL] [Abstract][Full Text] [Related]
10. Regional-scale hydrogeochemical evolution across the arsenic-enriched transboundary aquifers of the Ganges River Delta system, India and Bangladesh. Chakraborty M; Mukherjee A; Ahmed KM Sci Total Environ; 2022 Jun; 823():153490. PubMed ID: 35104519 [TBL] [Abstract][Full Text] [Related]
11. Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the Woodbine Aquifer of north-central Texas. Hudak PF; Sanmanee S Environ Monit Assess; 2003 Mar; 82(3):311-20. PubMed ID: 12602633 [TBL] [Abstract][Full Text] [Related]
12. Elevated fluoride and selenium in west Texas groundwater. Hudak PF Bull Environ Contam Toxicol; 2009 Jan; 82(1):39-42. PubMed ID: 18949438 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Wei C; Guo H; Zhang D; Wu Y; Han S; An Y; Zhang F Environ Geochem Health; 2016 Feb; 38(1):275-90. PubMed ID: 25990719 [TBL] [Abstract][Full Text] [Related]
14. Hydrogeochemical Evaluation of Groundwater Quality Parameters for Ogallala Aquifer in the Southern High Plains Region, USA. Haskell D; Heo J; Park J; Dong C Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886304 [TBL] [Abstract][Full Text] [Related]
15. Genesis of arsenic-rich groundwater and the search for alternative safe aquifers in the Gangetic Plain, India. Saha D; Shukla RR Water Environ Res; 2013 Dec; 85(12):2254-64. PubMed ID: 24597041 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of long-term (1960-2010) groundwater fluoride contamination in Texas. Chaudhuri S; Ale S J Environ Qual; 2014 Jul; 43(4):1404-16. PubMed ID: 25603087 [TBL] [Abstract][Full Text] [Related]
17. Long-term (1930-2010) trends in groundwater levels in Texas: influences of soils, landcover and water use. Chaudhuri S; Ale S Sci Total Environ; 2014 Aug; 490():379-90. PubMed ID: 24867702 [TBL] [Abstract][Full Text] [Related]
18. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Re V; Sacchi E; Mas-Pla J; MenciĆ³ A; El Amrani N Sci Total Environ; 2014 Dec; 500-501():211-23. PubMed ID: 25217996 [TBL] [Abstract][Full Text] [Related]
19. Impact of urbanization coupled with drought situations on groundwater quality in shallow (basalt) and deeper (granite) aquifers with special reference to fluoride in Nanded-Waghala Municipal Corporation, Nanded District, Maharashtra (India). Pandith M; Kaplay RD; Potdar SS; Sangnor H; Rao AD Environ Monit Assess; 2017 Sep; 189(9):428. PubMed ID: 28770429 [TBL] [Abstract][Full Text] [Related]
20. Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Duraisamy S; Govindhaswamy V; Duraisamy K; Krishinaraj S; Balasubramanian A; Thirumalaisamy S Environ Geochem Health; 2019 Apr; 41(2):851-873. PubMed ID: 30203219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]